期刊文献+

基于K-近邻算法的文本情感分析方法研究 被引量:10

Research on analyzing sentiment of texts based on k-nearest neighbor algorithm
下载PDF
导出
摘要 为了识别网络文本的情感倾向性,通过分析文本结构以及情感表达的特点,提出了一种基于K-近邻的文本情感分析方法,将整个文本的情感划分为局部情感和全局情感。建立条件随机场模型,确定文本中的局部情感,通过K-近邻算法计算文本的全局情感。实验结果表明,与传统机器学习方法相比,该方法能细粒度、多层次的分析文本的情感,同时能有效提高情感分析的准确率。 In order to identify polarity of sentiment on web texts, by analyzing the text structure and the characteristics of expressing sentiment in texts, a method based on K-nearest algorithm is proposed. In this method, sentiment of a text is divided into local sentiment and global sentiment. Local sentiment can be determined by conditional random field models, and the K-nearest neighbor algorithm is used to compute global sentiment of the text. Experimemal results show that compared with traditional machine learning methods, this method can analyze sentiment on multi-level and is fine granularity, and can effectively improve accuracy of sentiment analysis.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第3期1160-1164,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(50978030) 陕西省自然科学基金项目(2009-jm8002-1) 高等学校博士学科点专项科研基金项目(20096102120045)
关键词 情感分析 局部情感 全局情感 层次化模型 条件随机场模型 K-近邻算法 analyzing sentiment local sentiment global sentiment hierarchical model conditional random field models K-nearest neighbor algorithm
  • 相关文献

参考文献16

  • 1KIM SM,HOVY E.Identifying and analyzing judgmentopinions[C].PA,USA:Proceedings of the Main Conferenceon Human Language Technology Conference of the North A-merican Chapter of the Association of Computational Linguis-tics,2006:200-207. 被引量:1
  • 2Devitt A,Ahmad K.Sentiment polarity identification in finan-cial news:A cohesion based approach[C].Prague,CZ:As-sociation for Computational Linguistics,2007:984-991. 被引量:1
  • 3PANG B,LEE L.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval,2008,2(1-2):1-135. 被引量:1
  • 4Titov I,McDonald R.Modeling online reviews with multi-grain topic models[C].New York,NY,USA:Proceedingsof the 17th International Conference on World Wide Web,2008:1-120. 被引量:1
  • 5Stoyanov V,Cardie C.Topic identification for fine-grained o-pinion analysis[C].PA,USA:Proceedings of the 22nd In-ternational Conference on Computational Linguistics,2008:817-824. 被引量:1
  • 6徐琳宏,林鸿飞,赵晶.情感语料库的构建和分析[J].中文信息学报,2008,22(1):116-122. 被引量:110
  • 7CHOI Y,CARDIE C,RILOF E.Identifying sources ofopinions with conditional random fields and extraction patterns[C].PA,USA:Proceedings of the Conference on HumanLanguage Technology and Empirical Methods in Natural Lan-guage Processing,2009:355-362. 被引量:1
  • 8ZHAO J,LIU K,WANG G.Adding redundant features forCRFs-based sentence sentiment classification[C].PA,USA:Proceedings of the Conference on Empirical Methods in NaturalLanguage Processing,2008:117-126. 被引量:1
  • 9ZHAO J,XU H B,HUANG X J.Overview of Chineseopinion analysis evaluation[EB/OL].http://nlpr-web.ia.a.c/2008papers/gnhy/nh1 0.pdf,2008. 被引量:1
  • 10Kristof Coussenment,Dirk Vanden.Improving customercomplaint management by automatic email classification usinglinguistic style features as predictors[EB/OL].http://www.elsevier.com/locate/dss,2007. 被引量:1

二级参考文献14

共引文献109

同被引文献108

引证文献10

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部