期刊文献+

基于间隔链表改进的频繁项集挖掘算法 被引量:4

Improved frequent itemset mining algorithm based on interval list
下载PDF
导出
摘要 针对PrePost算法中需要建立复杂的前序和后序编码树(PPC-tree)和节点链表(N-list)的问题,提出一种基于间隔链表(I-list)改进的高效频繁项集挖掘算法。首先,该算法采用了比频繁模模式树(FP-tree)更加压缩的数据存储结构间隔编码的频繁模式树(IFP-tree),无需迭代地建立条件FP-tree;其次,该算法利用更简洁的I-list代替了PrePost中复杂的N-list,从而提高了建树和挖掘速度;最后,对于单分支路径的情况,该算法通过组合的方法,直接求得某些频繁项集,以提高算法的时间性能。实验结果表明:一方面,对于同一数据集在相同支持数下挖掘的结果相同,验证了改进算法的正确性;另一方面,无论在时间还是空间上改进算法的整体性能均比PrePost算法提高约10%;且对于稀疏型数据库或密集型数据库的挖掘都有较好的应用。 Focusing on the problem that Pre Post algorithm needs to build complex Pre-order and Post-order Code tree( PPC-tree) and Node list( N-list),an improved frequent itemset mining algorithm based on the Interval list( I-list) was proposed. Firstly,data storage structure with more compression compared to Frequent Pattern tree( FP-tree),called Interval FP-tree( IFP-tree),was adopted,which mined frequent itemsets without iteratively establishing conditional tree. Secondly,the more concise method called I-list was used to replace the complex N-list in Pre Post so as to improve mining speed.Finally,in the case of single branch path,some frequent itemsets were directly obtained by the method of combination. The experimental results prove the correctness of the proposed algorithm by getting the same results for the same dataset under same minimum supports,the proposed algorithm is superior to Pre Post algorithm by about 10 percent in terms of time and space which has a good application in sparse database or intensive database.
出处 《计算机应用》 CSCD 北大核心 2016年第4期997-1001,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272029)~~
关键词 数据挖掘 关联规则 频繁项集 频繁模式树 间隔链表 data mining association rule frequent itemset Frequent Pattern tree(FP-tree) Interval list(I-list)
  • 相关文献

参考文献12

  • 1AGRAWAL R,IMIEILNSKI T,SWAMI A.Mining association rules between sets of items in large databases[C]//Proceedings of 1993 ACM SIGMOD Conference on Management Data.New York:ACM,1993:207-216. 被引量:1
  • 2AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[C]//VLDB 1994:Proceedings of the 20th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann Publishers,1994:487-499. 被引量:1
  • 3LIN K C,LIAO I E,CHEN Z S.An improved frequent pattern growth method for mining association rules[J].Expert Systems with Applications,2011,38(5):5154-5161. 被引量:1
  • 4GUPTA R,SATSANGI C S.An efficient range partitioning method for finding frequent patterns from huge database[J].International Journal of Advanced Computer Research,2012,2(2):62-69. 被引量:1
  • 5李也白,唐辉,张淳,贺玉明.基于改进的FP-tree的频繁模式挖掘算法[J].计算机应用,2011,31(1):101-103. 被引量:21
  • 6SUCAHYO Y G,GOPALAN R P.CT-PRO:a bottom-up non recursive frequent itemset mining algorithm using compressed FP-tree data structure[C]//FIMI 2004:Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.Piscataway,NJ:IEEE,2004:212-223. 被引量:1
  • 7ZAKI M J,GOUDA K.Fast vertical mining using diffsets[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data mining.New York:ACM,2003:326-335. 被引量:1
  • 8LI Z F,LIU X F,CAO X.A study on improved Eclat data mining algorithm[J].Advanced Materials Research,2011,328/329/330:1896-1899. 被引量:1
  • 9DENG ZhiHong,WANG ZhongHui,JIANG JiaJian.A new algorithm for fast mining frequent itemsets using N-lists[J].Science China(Information Sciences),2012,55(9):2008-2030. 被引量:25
  • 10LIN K C,LIAO I E,CHANG T P.A frequent itemset mining algorithm based on the principle of inclusion-exclusion and transaction mapping[J].Information Sciences,2014,276:278-289. 被引量:1

二级参考文献41

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216. 被引量:1
  • 2AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]// VLDB 1994: Proceedings of the 20th International Conference on Very Large Database. [ S. l. ] : Morgan Kaufmann, 1994: 478 - 499. 被引量:1
  • 3HAN JIAWEI, KAMBER M. Data mining: Concepts and techniques [M].影印版.北京:高等教育出版社,2001. 被引量:1
  • 4HAN JIAWEI, PEI JIAN, YIN YIWEN. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29 (2): 1-12. 被引量:1
  • 5ZHOU QINGHUA, CHU W W, LU BAOJING. SmartMiner: A depth first algorithm guided by tail information for mining maximal frequent itemsets[ C]//ICDM 2002: Proceedings of IEEE International Conference on Data Mining. Washington, DC: IEEE, 2002: 570- 577. 被引量:1
  • 6GRAHNE G, ZHU JIANFEI. Fast algorithms for frequent itemset mining using FP-trees[ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10) : 1347 - 1362. 被引量:1
  • 7PIETRACAPRINA A, ZANDOLIN D. Mining frequent itemsets using patficia tries[C] //FIMI '03: Proceedings of the 1st Workshop on Frequent Itcmset Mining Implementations. Melbourne, Florida, USA: [ s. n. ], 2003:204 -208. 被引量:1
  • 8朱明.数据挖掘[M].2版.合肥:中国科学技术大学出版社,2008. 被引量:10
  • 9Frequent itemset mining implementations repository[ EB/OL]. [ 2010 -01 -25]. http: //tirol. cs. helsinkl. ft. 被引量:1
  • 10HaHan J W, Pei J, Yin Y W. Mining frequent itemsets without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of data (SIGMOD’00), New York, 2000. 1-12. 被引量:1

共引文献41

同被引文献27

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部