期刊文献+

基于线性SVM的车辆前方行人检测方法 被引量:9

Method of pedestrian detection ahead of vehicle based on linear SVM
下载PDF
导出
摘要 采用基于线性SVM方法检测复杂交通背景下车辆前方行人.该方法根据行人非刚性的特点,利用三线性插值法提取图像的梯度方向直方图特征,采用线性支持向量机对视频中的图像进行多尺度融合检测,以适应复杂交通背景的行人检测需求,有效提高检测准确性.实验表明,该算法能够对混合交通视频中的不同尺度和姿态的行人进行有效识别. The pedestrians ahead of vehicle in complex transportation background were detected by using the pedestrian detection method based on linear SVM. According to the characteristics of pedestrian non-rigid, trilinear interpolation algorithm was used to extract the histograms of oriented gradient features of images. Linear support vector machine (SVM) was used to can'y on the multi-scale fusion examination of the video image in order to adapt to the requirement of pedestrian detection in complex transportation background and to effectively improve the detection accuracy. The experiment results show that the algorithm can effectively identify the different scales and poses pedestrian in mixed traffic videos.
出处 《天津工业大学学报》 CAS 北大核心 2012年第1期69-73,共5页 Journal of Tiangong University
基金 天津市科技支撑计划重点项目(10ZCKFGX00300)
关键词 行人检测 梯度方向直方图特征 三线性插值 线性支持向量机(SVM) pedestrian detection histograms of oriented gradient features trilinear interpolation linear support vector machine(SVM)
  • 相关文献

参考文献9

二级参考文献28

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2Fujiyoshi L A J, Patil R S. Moving target classification and tracking from real-time video. Processing of IEEE Workshop on Applieations of Computer Vision. 1998:8--14 被引量:1
  • 3Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance. The 9th ICCV ,2003 ;1:734--741 被引量:1
  • 4Dalal N, Triggs B. Histograms of oriented gradients for human detection. CVPR ,2005 被引量:1
  • 5Zhu Qiang,Avidan S,Yeh M C. Fast human detection using a cascade of histograms of oriented gradients. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York :2006 ;2 :1491--1498 被引量:1
  • 6Platt J. Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods-Support Vector Learning, MIT Press, to appear, 1998. 被引量:1
  • 7Keerthi S S, Shevade S K, Bhattacharyya C. Improvements to platt's SMO algorithm for SVM classifier design. Neural Computation,2001 被引量:1
  • 8Theodofidis S, Koutroumbas H.模式识别(英文版.第3版).北京:机械工业出版社, 被引量:1
  • 9Schauland S, Park S B, Zhang Yan. Vision-based Pedestrian Detection Improvement and Verification of Feature Extraction Methods and SVM-based Classification[C]//Proc. of IEEE Intelligent Transportation Systems Conference. [S. l.]: IEEE Press, 2006: 97-102. 被引量:1
  • 10Dalai N. Finding People in Images and Videos[D]. Grenoble, France: The French National Institute for Research in Computer Science and Control, 2006. 被引量:1

共引文献113

同被引文献70

引证文献9

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部