期刊文献+

基于支持向量机的特定目标检测方法 被引量:8

Method for Special Targets Detection Based on Support Ector Machines
下载PDF
导出
摘要 提出了运用支持向量机进行目标检测的方法。通过对航空影像中的军事目标和自然背景两类样本进行学习,支持向量机检测方法建立了针对目标和非目标有效区分的识别模型,该模型能够对航空影像中所有的区域进行快速的检测和识别,检测到所有感兴趣的人造军事目标。试验表明,该方法快速、高效且具备一定的鲁棒性。 In the light of the problem that the man-made targets are difficult to detect in the aviation images with complex background, a new method using support vector machines is put forward in this paper. Through training the target and non-target samples, support vector machines method can set up an effective recognition model, which can detect all possible interested man-made targets through scanning all areas in images. Experiments show that this method is rapid, effective and robust.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第10期912-915,932,共5页 Geomatics and Information Science of Wuhan University
基金 测绘遥感信息工程国家重点实验室开放研究基金资助项目(020101)。
关键词 支持向量机 模式识别 目标检测 support vector machines pattern recognition target detection
  • 相关文献

参考文献9

  • 1Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995 被引量:1
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovering, 1998, 2(2): 121~167 被引量:1
  • 3边肇祺, 张学工. 模式识别(第二版). 北京:清华大学出版社, 1999 被引量:1
  • 4Schlkopf B, Mika S. Input Space vs Feature Space in Kernel-based Methods. IEEE Trans. on Neural Networks, 1999, 10(9): 1 000~1 017 被引量:1
  • 5Hyeran B, Lee S W. Application of Support Vector Machines for Pattern Recognition: a Survey. In: Lee S W, Verri A, eds. Pattern Recognition with Support Vector Machines. Heidelberg, Berlin: Springer-Verlag, 2002.213~236 被引量:1
  • 6梅建新,段汕,潘继斌,秦前清.支持向量机在小样本识别中的应用[J].武汉大学学报(理学版),2002,48(6):732-736. 被引量:28
  • 7Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/,2003 被引量:1
  • 8Chapelle O, Haffner P, Vapnik V N. SVMs for Histogram-Based Image Classification. IEEE Trans. on Neural Network,1999, 10(5): 1 055~1 064 被引量:1
  • 9Zhang Y N, Zhao R C. New Method for Image Target Recognition. The 2nd International Conference on Image and Graphics. SPIE, Hefei, 2002 被引量:1

二级参考文献14

  • 1Vapnik V N. The Nature of Statistical of Learning Theory [M]. New York: Springer-Verlag, 1995. 被引量:1
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovering, 1998, 2(2): 121-167. 被引量:1
  • 3Mei Jian-xin. A Study of Feature Selection and Pre-cancer Cell Diagnosis [D]. Wuhan: Wuhan University, 2001(Ch). 被引量:1
  • 4Bian Zhao-qi, Zhang Xue-gong. Pattern Recognition(2nd Edition) [M]. Beijing: Tsinghua University Press (Ch). 被引量:1
  • 5Zhang Jian-zhong, Xu Shao-ji. Linear Programming [M]. Beijing: Science Press, 1997(Ch). 被引量:1
  • 6Schlkopf B, Mika S. Input Space vs. Feature Space in Kernelbased Methods[J]. IEEE Trans on Neural Networks, 1999, 10(9): 1000-1017. 被引量:1
  • 7Cortes C,Vapnik V N. Support Vector Network [J]. Machine Learning, 1995, 20: 273-297. 被引量:1
  • 8Schlkopf B. Statistical Learning and Kernel Methods[M]. Cambridge, UK:Microsoft Research, 2000. 被引量:1
  • 9Schlkopf B, Smola A. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond[M]. Cambridge, MA: MIT Press, 2002. 被引量:1
  • 10Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines [A]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing[C]. New York:IEEE, 1997. 被引量:1

共引文献27

同被引文献162

引证文献8

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部