期刊文献+

石油钻井中钻具失效的支持向量机技术

Supporting vector machine technology for drilling stem failure in oil drilling engineering
下载PDF
导出
摘要 针对钻具失效影响因素多,隐蔽性强的特点,提出了一种运用支持向量机技术分析钻具失效的新方法;建立了基于支持向量机技术的钻具失效模型,通过小样本数据优化,利用该模型对现场数据进行了模拟预测实验.实验结果与实际情况相吻合. In this paper,the basal contents and methods of the SVM technology are introduced and a drill stem failure learning model based on the SVM technology is established by learning small data samples to optimize the model in order to study the drill stem failure in drilling engineering.In addition,the model is applied to the classification of the drilling data from spot for predication experiment,the very similar results are obtained.The results indicate that the SVM technology and its learning model are applicable in drilling engineering.
出处 《大庆石油学院学报》 CAS 北大核心 2006年第1期70-72,共3页 Journal of Daqing Petroleum Institute
基金 黑龙江自然科学基金资助(E200507)
关键词 钻井工程 钻具失效 统计学习理论 支持向量机 最优分类面 核函数 drilling engineering drill stem failure statistical learning theory support vector machine optimal separating hyper-plane kernel function
  • 相关文献

参考文献7

二级参考文献17

  • 1Vapnik V N. The Nature of Statistical of Learning Theory [M]. New York: Springer-Verlag, 1995. 被引量:1
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovering, 1998, 2(2): 121-167. 被引量:1
  • 3Mei Jian-xin. A Study of Feature Selection and Pre-cancer Cell Diagnosis [D]. Wuhan: Wuhan University, 2001(Ch). 被引量:1
  • 4Bian Zhao-qi, Zhang Xue-gong. Pattern Recognition(2nd Edition) [M]. Beijing: Tsinghua University Press (Ch). 被引量:1
  • 5Zhang Jian-zhong, Xu Shao-ji. Linear Programming [M]. Beijing: Science Press, 1997(Ch). 被引量:1
  • 6Schlkopf B, Mika S. Input Space vs. Feature Space in Kernelbased Methods[J]. IEEE Trans on Neural Networks, 1999, 10(9): 1000-1017. 被引量:1
  • 7Cortes C,Vapnik V N. Support Vector Network [J]. Machine Learning, 1995, 20: 273-297. 被引量:1
  • 8Schlkopf B. Statistical Learning and Kernel Methods[M]. Cambridge, UK:Microsoft Research, 2000. 被引量:1
  • 9Schlkopf B, Smola A. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond[M]. Cambridge, MA: MIT Press, 2002. 被引量:1
  • 10Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines [A]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing[C]. New York:IEEE, 1997. 被引量:1

共引文献2336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部