期刊文献+

可见光图像人造目标检测技术综述 被引量:3

Survey on man-made object detection in visible imagery
下载PDF
导出
摘要 对可见光自然图像人造目标检测技术研究进行综述,在人造目标检测技术的问题描述基础上,基于人造目标与自然背景存在的特性差异,将现有技术按照基于几何特征、分形特征、概率模型、水平集、聚类等类别进行了讨论,并借鉴ATR(自动目标识别)技术评价标准分析了各个算法的优缺点。最后探讨了人造目标检测技术存在的问题和进一步的研究方向。 This paper summarized several man-made objects detection methods.Based on features extraction from man-made object and natural background,followed by presentation of issues on man-made object detection technique,discussed the current algorithms,including based on geometry feature,fractal model,probabilistic model,level set,clustering.Analyzed the advantages and defects of each method detailedly based on ATR(automatic targets recognition)detection performance.Finally,pointed out the present issues and possible further research direction.
作者 蔡飞 涂丹
出处 《计算机应用研究》 CSCD 北大核心 2010年第7期2430-2434,共5页 Application Research of Computers
关键词 人造目标检测 几何特征 分形 概率模型 水平集 聚类 性能评估 man-made object detection geometry feature fractal model probabilistic model level set clustering performance evaluation
  • 相关文献

参考文献41

  • 1LI Bo,CHEN Qi-mei,GUO Fan.Freeway auto-surveillance from traffic video[C] //Proc of the 6th International Conference on ITS Telecommunications.2006:167-170. 被引量:1
  • 2HINZ S,BAUMGARTNER A.Automatic extraction of urban road networks from multi-view aerial imagery[J].ISPRS Journal of Photogrammetry & Remote Sensing,2003,58(1-2):83-98. 被引量:1
  • 3梅建新,段汕,秦前清.基于支持向量机的特定目标检测方法[J].武汉大学学报(信息科学版),2004,29(10):912-915. 被引量:8
  • 4RAFAEL C G,RICHARD E W.Digital image processing[M].2nd ed.New Jersey:Prentice Hall,2002. 被引量:1
  • 5PHALKE S M,COULOIGNER I.Change detection of linear man-made objects using feature extraction technique[C] //Proc of the 3rd Inter-national Symposium on Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences.2005:1682-1777. 被引量:1
  • 6ZHANG Qiao-ping,COULOIGNER I.A wavelet approach to road extraction from high spatial remotely-sensed imagery[J].Geomatica,2004,58(1):33-39. 被引量:1
  • 7史泽林,王俊卿,黄莎白.模糊几何特征及其在人造目标检测中的应用[J].光电工程,2005,32(11):5-8. 被引量:5
  • 8朱宪伟,李由,于起峰.机载视觉自主着陆过程中的跑道提取方法[J].国防科技大学学报,2009,31(2):20-24. 被引量:3
  • 9MANDELBROT B B.The fractal geometry of nature[M].New York:W.H.Freeman and Company,1982. 被引量:1
  • 10KELLER J,CROWNOVER R,CHEN R.Characteristics of nature scenes related to the fractal dimension[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1987,9(5):621-627. 被引量:1

二级参考文献58

共引文献755

同被引文献32

  • 1张小艳,李强.基于SVM的分类方法综述[J].科技信息,2008(28):344-345. 被引量:23
  • 2诸葛霞,向健勇.基于分形的实现小目标检测的一种具体方法[J].红外技术,2006,28(7):411-414. 被引量:1
  • 3Alexe B,Deselaers T, Ferrari V, Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11) :2189-2202. 被引量:1
  • 4Alexe B,Deselares T,Ferrari V. What is an object? [C] //IEEE Conference on Computer Vision and Pattern Rec- ognition. San Francisco, USA : IEEE, 2010 : 73-80. 被引量:1
  • 5Hou X, Zhang L. Saliency detection: a spectral residual approach. [C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007: 1-8. 被引量:1
  • 6Felzenszwalb F P, Huttenlocher D P. Efficient graph- based image segmentation[J]. International Journal of Computer Vision,2004,59(2) :167-181. 被引量:1
  • 7PU H, BO L, RENT T,etal.. A fast sea-level line extraction and object detection method for in- frared sea image [C]. International Symposium on Optoelectronic Technology and Application, Bei- jing, P.R. China= SPIE, 2014, 9300..930007. 1- 930007.7. 被引量:1
  • 8BO L, RENT T,LIU Y B,etal.. Sea-leve! line ex- traction based on piecewise line detection[C]. In- ternational Symposium on Optoelectronic Technolo- gy and Application, Beijing, P.R. China SPIE, 2014, 9301: 93013L. 2-93013L. 8. 被引量:1
  • 9苏丽,周娜,徐从营.基于全景视觉的舰船小目标检测方法研究[c].第32届中国控制会议,陕西西安,中国,2013. 被引量:1
  • 10MANDELBROT B B. The Fractal Geometry of Nature [M]. New York.. W H Freeman and Com- pany, 1982.. 102-113. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部