期刊文献+

基于车前脸HOG特征的车型识别方法研究与实现 被引量:12

Research and Implementation of Vehicle-Type Recognition Method Based on HOG Features of Vehicle Frontal Face
下载PDF
导出
摘要 针对道路视频监控中车型识别的问题,为准确定位车前脸,提出了一种基于车前脸梯度方向直方图的识别算法。用形态学粗定位和投影细定位算法提取视频中车前脸区域,准确定位车前脸,能提高全局特征算法的识别效果。将车前脸图像的梯度方向直方图特征作为识别初始特征,采用线性判别分析算法进行特征提取,降低特征维数,提高识别速度。基于集成学习的思想,对车前脸进行网格分割,各子区域训练得到的分类器生成集成分类器,提高车型识别率。建立了15种车系80种车型的车前脸图像库进行实验,实验结果表明,上述方法的车型正确识别率为93.5%。 Using Histograms of Oriented Gradients feature of a vehicle frontal face, this paper presented a vehicle - type recognition method for vehicle - type recognition in road video surveillance, which improves the recognition rate. To begin with, a vehicle frontal face was determined by combining the method of mathematical morphology and projection method. Then the Histograms of Oriented Gradients features were extracted from the image of the front view of the vehicle and processed by using linear diseriminant analysis algorithm. Finally, based on the idea of ensemble learning, vehicle frontal face was divided into grids, and every sub area was trained to integrate an ensemble classifi- er. Experiments were carried out based on a dataset of vehicle frontal face images including fifteen vehicle makes and eighty models. The experimental results show that the correct recognition rate of the proposed method is 93.5%.
出处 《计算机仿真》 CSCD 北大核心 2015年第12期119-123,共5页 Computer Simulation
基金 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj201428) 国家自然科学基金(61371170)
关键词 梯度方向直方图特征 车型识别 车前脸 线性判别分析 集成学习 Histograms of oriented gradients feature Vehicle - type recognition Vehicle frontal face Linear dis- crimination analysis Ensemble learning
  • 相关文献

参考文献17

  • 1Chen Li - Chih, et al. Vehicle Make and Model Recognition Using Symmetrical SUER[ C]// Advanced Video and Signal Based Sur- veillance (AVSS) , Krakow , 2013 10th IEEE International Confer- ence on, IEEE, 2013:472 - 477. 被引量:1
  • 2Sara Saravi, Eran A. Edirisinghe . Vehicle Make and Model Rec- ognition in CCTV Footage[ C]. Digital Signal Processing (DSP), 2013 18th International Conference on, IEEE, 2013:1 -6. 被引量:1
  • 3M Saquib Sarfraz, et al. Bayesian Prior Models for Vehicle Make and Model Recognition [ C ]. Frontiers of Information Technology ( FIT), Proceedings of the 6th International Conference on, IEEE, 2009. 被引量:1
  • 4马蓓..车型识别技术在视频监控中的应用[D].西安电子科技大学,2010:
  • 5黄灿.基于局部特征的汽车识别[J].微型电脑应用,2010,26(8):51-52. 被引量:4
  • 6Krishnan Ramnath, et al. Car Make and Model Recognition using 3D Curve Alignment [ C ]. Applications of Computer Vision ( WACV), 2014 IEEE Winter Conference on, IEEE, 2014:285 - 292. 被引量:1
  • 7H Bay, A Ess, T Tuytelaars, L Van Gool. Speeded - Up Robust Features(SURF) [J]. Computer Vision and Image Understanding, 2008,110(3) :346 -359. 被引量:1
  • 8N Dalai, B Triggs. Histograms of oriented gradients for human de- tection[ C]. IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition(CVPR), San Diego, CA, USA , June 25, 2005,1:886 - 893. 被引量:1
  • 9Tan Hengliang, Yang Bing, Ma Zhengming. Face recognition based on the fusion of g/obai and local HOG features of face images [J]. Computer Vision, 2014,8(3) : 224 -234. 被引量:1
  • 10向征,谭恒良,马争鸣.HOG在人脸识别中的性能研究[J].计算机工程,2012,38(15):194-196. 被引量:9

二级参考文献35

  • 1陈羽,赖剑煌.基于多分类器融合的人脸识别方法[J].中山大学学报(自然科学版),2006,45(4):24-27. 被引量:5
  • 2Lai A,Fung G,and Yung N.Vehicle type classification from visual-based dimension estimation.In IEEE Int.Transp.Syst.Conf.,pages 201-206,2001. 被引量:1
  • 3Petrovic V and Cootes T.Analysis of features for rigid structure vehicle type recognition.In BMVC,volume 2,pages 587-596,2004. 被引量:1
  • 4Rahati S,Moravejian R,Ehsan Mohamad Kazemi and Farhad Mohamad Kazemi.Vehicle Recognition Using Contourlet Transform and SVM,Proceedings of the Fifth International Conference on Information Technology:New Generations. 被引量:1
  • 5Dlagnekov L.Video-based car sttrveillance:License plate make and model recognition.Masters Thesis,University of California at San Diego 2005. 被引量:1
  • 6Lowe D.Distinctive image features from scale-invatiant keypomts,cascade filtering approach.IJCV 2004. 被引量:1
  • 7Viola P,and Jones M.Rapid object detection using a boosted cascade of simple features.CVPR2001. 被引量:1
  • 8Bay H,Tuytelaars T,and L Vam.Gool,SURF:Speeded up robust features.ECCV2006. 被引量:1
  • 9ZHENG Qiu-mei, WANG Hong-xia. Image retrieval algorithm based on vector transferring and clustering [ J ]. Journal of Computational Information Systems, 2009,5 (2) : 1009-1016. 被引量:1
  • 10ZHENG Qiu-mei, SHI Gong-xi, LU Xing-hui. A robust digital watermarking scheme based on integer wavelet using compound encryption[ C ]//Proceedings of 2009 4th International Conference on Computer Science & Education, Nanning, China, July 25-28, 2009. Piscataway, NJ, USA: IEEE, 2009:716-719. 被引量:1

共引文献39

同被引文献117

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部