期刊文献+

一种基于3D视觉传感器的障碍物检测方法 被引量:4

An Obstacle Detection Method Based on 3D Visual Sensors
原文传递
导出
摘要 本文提出一种基于3D视觉传感器的障碍物检测方法,用于解决准静态场景的障碍物检测的误检、漏检等问题。本文算法首先对3D视觉传感器得到的点云数据进行坐标系转换,然后以高度值作为尺度因子产生深度图像,然后与障碍物高度参数进行比较产生二值化图像,通过计算二值化图像最大连通域大小辨识出障碍物。本算法使用在变电站电力巡检机器人安全巡检项目中,通过长时间复杂环境运行验证了算法的稳定性和有效性。 This paper proposes a method of obstacle detection based on 3 D vision sensor,which is used to avoid false detection and missed detection of obstacle for robot navigation in quasi-static scenes.The algorithm firstly performed coordinate system conversion on the point cloud data obtained by the 3 D vision sensor.Secondly,the depth image was generated with the height value as the scale factor,and then it was compared with the obstacle height parameter to generate the binarized image.Finally,we calculates the maximum connectivtity of the binarized image,and the size of field identifies the obstacle.The algorithm is used in the substation power inspection robot safety inspection project to verify the stability and effectiveness of the algorithm through long-term complex environment operation.
作者 宋弦 陈锦龙 陈俊全 叶航超 Song Xuan;Chen Jinlong;Chen Junquan;Ye Hangchao(Guizhou Power Grid Co.,Ltd.,Guiyang,Guizhou550002,China)
出处 《应用激光》 CSCD 北大核心 2020年第6期1115-1119,共5页 Applied Laser
关键词 障碍物检测 导航 机器人 obstacle detection navigation robot
  • 相关文献

参考文献6

二级参考文献44

  • 1贺美芳,周来水,神会存.散乱点云数据的曲率估算及应用[J].南京航空航天大学学报,2005,37(4):515-519. 被引量:27
  • 2Engelhard N, Endres F, Hess J, et al. Real-time 3D visual SI.AM with a hand-held RGB-D camera [ C]//The RGB-D Workshop on 3D Pereeption in Robotics at the Empean Robotics Forum. Robotdalen, Sweden : Association for Computing Machiney, 2011 : 239-248. 被引量:1
  • 3Izadi S, Kim D, Hilliges O, et al. KinectFusion: real-time 30 re- conslruetion and interactinn using a mnving depth camera [ C ]//The 24th Annual ACM Symposium on User Interface Software and Technology. Santa Barbara, CA : ACM,2011:559-568. 被引量:1
  • 4Tong J, Zhou J, Liu L, et al. Scanning 3d full human bodies using kinects[J]. Visualization and Computer Graphics, 2012, 18(4) : 643-650. 被引量:1
  • 5Lee S, Ho Y. Real-time Stereo view generation using kinect depth camera[ C]//Proceedings of 2011 Asia-Pacific Signal and Information Processing Association Annual Conference. Cam- bridge : Cambridge University Press, 2011 : 123-133. 被引量:1
  • 6Lee W, Park N, Woo W. Depth-assisted real-time 3D object de- tection for augmented reality [ C ]// Proceedings of ICAT' 11. Osaka, Japan: WorldPress, 2011 : 126-132. 被引量:1
  • 7Peter H, Michael K, Evan H, et al. RGB-D mapping: Using Ki- nect-style depth cameras for dense 3D modeling of indoor envi- ronments [ J ]. International Journal of Robotics Research, 2012, 31 (5) :647-663. 被引量:1
  • 8Smisek J, Jancosek M, Pajdla T. 3D With Kinect[ M]. London : Consumer Depth Cameras for Computer Vision, 2013 : 3-25. 被引量:1
  • 9Herrera C, Kannala J, Heikkila J. Joint depth and color camera calibration with distortion correction [ J ]. Pattern Analysis and Machine Intelligence, 2012, 34 (10) : 2058-2064. 被引量:1
  • 10Arieli Y, Freedman B, Machline M, et al. Depth mapping using projected patterns: U.S. 8150142 B2 [P]. 2012-4-3. 被引量:1

共引文献79

同被引文献61

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部