期刊文献+

融合SIFT特征的熵图估计医学图像非刚性配准 被引量:12

Entropic graph estimation integrated with SIFT features for medical image non-rigid registration
原文传递
导出
摘要 配准准确性是医学图像配准算法的一项重要指标,像素灰度是目前图像配准中广泛使用的特征,但是灰度特征来源单一,而且忽略空间信息,在一些情况下容易产生误配。针对这个问题,本文提出一种融合SIFT特征的熵图估计医学图像非刚性配准算法。该算法首先使用基于互信息的刚性配准算法对两幅待配准图像进行粗配;然后,在采样点上提取像素灰度和SIFT高维特征,并在此基础上构造k-最邻近图(kNNG);最后,使用k-最邻近图来估计α互信息(αMI)。实验结果表明:和传统的基于互信息和像素灰度的刚性配准算法,基于熵图估计和单一像素灰度特征的非刚性配准算法相比,本文提出的算法具有更高的配准准确性。 Accuracy is important for the regrstration of medical images. Pixel gray values are a widely used feature in image registration. However, the gray values come from a single source and ignore the spatial information. In some cases, it will cause misalignment. To solve the problem, entropic graph estimation integrated with SIFT features is proposed as a medical image non-rigid registration algorithm. In the algorithm, mutual information based rigid registration is used to roughly register two images. Then the pixel gray value and the SIFT features are extracted to form a k-nearest neighbor graph (kNNG), which is used to estimate a-mutual information (aMI). Comparison results of the images obtained from lung CT images and brain MRI images showed that the proposed algorithm provides better accuracy than both, the conventional rigid registration algorithm based on mutual information and the non-rigid registration algorithm based on entropic graph estimation and single pixel gray values.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第3期412-418,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60873009)
关键词 医学图像配准 SIFT描述子 k-最邻近图 α互信息 medical image registration SIFT ( scale invariant feature transform) descriptor k-nearest neighbor graph(kNNG) α-mutual information (txMI)
  • 相关文献

参考文献16

  • 1卢振泰,冯衍秋,冯前进,陈武凡.基于主相位一致性的医学图像配准[J].电子学报,2008,36(10):1974-1978. 被引量:21
  • 2Pluim J, Maintz J, Viergever M. Mutual information based registration of medical images : a survey [ J ]. IEEE Transactions on Medical Imaging, 2003, 22 (8) : 986-1004. 被引量:1
  • 3Beirlant J, Dudewicz E J, Gyorfi L, et al. Nonparametric entropy estimation : an overview [ J ]. International Journal of Mathematical and Statistical Sciences, 2001,6( 1 ) : 17-39. 被引量:1
  • 4Hero A, Ma B, Michel O, et al. Applications of entropic spanning graphs [ J ]. IEEE Signal Processing Magazine, 2002, 19 (5): 85-95. 被引量:1
  • 5Redmond C, Yukich J. Asymptotics for Euclidean functionals with power weighted edges [ J ]. Stochastic Processes and their Applications, 1996, 61 (2): 289-304. 被引量:1
  • 6Lowe D. Distinctive Image features from scale-invariant keypoints [ J]. International Journal of Computer Vision, 2004, 60: 91-110. 被引量:1
  • 7Cheung W, Hamarneh G. N-SIFT: n-dimensional scale invariant feature transform [ J ]. IEEE Transactions on Image Processing, 2009, 18 (9) : 2012-2021. 被引量:1
  • 8Viola P, Wells W. Alignment by maximization of mutual information [ C ]//Proceedings of 5 th International Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society Press, 1995 : 16-23. 被引量:1
  • 9Mattes D, Haynor D R, Vesselle H, et al. PET-CT image registration in the chest using free-form deformations [ J ]. IEEE Transactions on Medical Imaging, 2003, 22 ( 1 ) : 120-128. 被引量:1
  • 10Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images [J]. IEEE Transactions on Medical Imaging, 1999, 18 (8): 712-721. 被引量:1

二级参考文献13

  • 1Brown LG. A survey of image registration techniques[J]. ACM Computing Survey, 1992,24 (4) :325 - 376. 被引量:1
  • 2B. Zitova, J. Flusser. Image registration methods: A survey [ J ]. Image and Vision Computing, 2003,21 ( 11 ) : 977 - 1000. 被引量:1
  • 3J B Antoine Maintz,M A Viergever. A survey of medical image registration [J].Medical Image Analysis, 1998,2 ( 1 ) : 1 - 36. 被引量:1
  • 4F Maes, A Collignon, Dirk Vandermeulen, et al. Multimodality image registration by maximization of mutual information [ J]. IEEE Trans on Medical Imaging, 1997, 16(2) : 189 - 198. 被引量:1
  • 5Peter Kovesi, Image features from phase congruency[J]. Journal of Computer Vision Research, 1999,1 (3) : 1 - 26. 被引量:1
  • 6Morrone, M. C, Owens, R. A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987,6(5) :303 - 313 被引量:1
  • 7Peter Kovesi. Phase congruency detects comers and edges[A]. The Australian Pattern Recognition Society Conference [ C ]. Sydney, USA: IEEE, 2003.309 - 318. 被引量:1
  • 8Peter Kovesi. Phase preserving denoising of images [ A ]. The Auslralian Pattern Recognition Society Conference[C ]. Perth WA, USA: IEEE, 1999. 212 - 217. 被引量:1
  • 9Zheng Liu, Robert Laganie' re. Phase congruence measurement for image similarity assessment[J].Pattern Recognition Letters, 2007,28( 11 ) : 166 - 172. 被引量:1
  • 10Rafael C. Gonzales, Richard E. Woods. Digital Image Processing(2nd Edition) [ M]. London: Prentice Hall, 2002. 被引量:1

共引文献20

同被引文献105

引证文献12

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部