期刊文献+

基于最小生成树的DoG关键点医学图像配准 被引量:2

DoG keypoints medical image registration based on minimum spanning tree
原文传递
导出
摘要 针对医学图像配准对鲁棒性强、准确性高和速度快的要求,提出一种基于最小生成树的DoG(d ifference of Gaussian)关键点配准算法。该算法首先从图像上提取DoG关键点,然后将关键点对应的灰度信息融入联合Rényi熵中,最后使用最小生成树来估计联合Rényi熵。新算法结合了DoG关键点的鲁棒性和最小生成树估计Rényi熵的高效性。实验结果表明,在图像含有噪声、灰度不均匀和初始变换范围较大的情况下,该算法在达到良好配准精度的同时,具有较强的鲁棒性和较快的速度。 For medical image registration of good robustness, high-accuracy and speed requirements, this paper proposes a DoG( difference of Gaussian) keypoints image registration algorithm based on Renyi entropy. This algorithm extracts DoG key points from images, then incorporates grey scale information of the key point into the joint Reuyi entropy, and estimates joint Renyi entropy directly using minimum spanning tree. The new algorithm combines the robustness of DoG key points and the high speed of Renyi entropy estimated by the minimum spanning tree. Experimental results show that in the images with noise, non-uniform intensity and large scope of the initial misalignment case, the algorithm achieves better robustness and higher speed while maintaining good registration accuracy.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第4期647-653,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60671050) 辽宁省重大科技计划项目(2008402001) 沈阳市重点技术创新计划项目(2008-9)
关键词 医学图像配准 DoG关键点 最小生成树 RENYI熵 medical image registration DoG keypoints minimum spanning tree(MST) Renyi entropy
  • 相关文献

参考文献18

  • 1卢振泰,冯衍秋,冯前进,陈武凡.基于主相位一致性的医学图像配准[J].电子学报,2008,36(10):1974-1978. 被引量:21
  • 2Zitová B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21(11):977-1000. 被引量:1
  • 3Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60:91-110. 被引量:1
  • 4Brown M,Lowe D.Recognising panoramas[C]//Proceedings of the 9th International Conference on Computer Vision.Washington DC,USA:IEEE Press,2003,2:1218-1225. 被引量:1
  • 5Lin Y P,Medioni G.Retinal image registration from 2D to 3D[C].Proceedings of Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Press,2008:1-8. 被引量:1
  • 6Kelman A,Sofka M,Stewart C V.Keypoint descriptors for matching across multiple image modalities and nonlinear intensity variations[C]//Proceedings of Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Press,2007:1-8. 被引量:1
  • 7Yang G,Stewart C V,Sofka M,et al.Registration of challenging image pairs:initialization,estimation,and decision[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2007,29(11):1973-1989. 被引量:1
  • 8Moradi M,Abolmaesoumi P,Mousavi P.Deformable registration using scale space keypoints[C]//Medical Imaging 2006:Image Processing.Proceedings of the SPIE,Los Angeles,USA:SPIE,2006,6144:791-798. 被引量:1
  • 9卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 10He Y,Hamza A B,Hamind K.An information divergence measure for ISAR image registration[C]//Proceedings of SPIE.Los Angeles,USA:SPIE Press,2001:199-208. 被引量:1

二级参考文献24

  • 1Brown LG. A survey of image registration techniques[J]. ACM Computing Survey, 1992,24 (4) :325 - 376. 被引量:1
  • 2B. Zitova, J. Flusser. Image registration methods: A survey [ J ]. Image and Vision Computing, 2003,21 ( 11 ) : 977 - 1000. 被引量:1
  • 3J B Antoine Maintz,M A Viergever. A survey of medical image registration [J].Medical Image Analysis, 1998,2 ( 1 ) : 1 - 36. 被引量:1
  • 4F Maes, A Collignon, Dirk Vandermeulen, et al. Multimodality image registration by maximization of mutual information [ J]. IEEE Trans on Medical Imaging, 1997, 16(2) : 189 - 198. 被引量:1
  • 5Peter Kovesi, Image features from phase congruency[J]. Journal of Computer Vision Research, 1999,1 (3) : 1 - 26. 被引量:1
  • 6Morrone, M. C, Owens, R. A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987,6(5) :303 - 313 被引量:1
  • 7Peter Kovesi. Phase congruency detects comers and edges[A]. The Australian Pattern Recognition Society Conference [ C ]. Sydney, USA: IEEE, 2003.309 - 318. 被引量:1
  • 8Peter Kovesi. Phase preserving denoising of images [ A ]. The Auslralian Pattern Recognition Society Conference[C ]. Perth WA, USA: IEEE, 1999. 212 - 217. 被引量:1
  • 9Zheng Liu, Robert Laganie' re. Phase congruence measurement for image similarity assessment[J].Pattern Recognition Letters, 2007,28( 11 ) : 166 - 172. 被引量:1
  • 10Rafael C. Gonzales, Richard E. Woods. Digital Image Processing(2nd Edition) [ M]. London: Prentice Hall, 2002. 被引量:1

共引文献45

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部