期刊文献+

大形变微分同胚图像配准快速算法 被引量:7

A Fast Image Registration Algorithm for Diffeomorphic Image with Large Deformation
下载PDF
导出
摘要 本文提出一种研究大形变图像配准算法.大形变使得图像信息和拓扑结构有较大的改变,目前该方面的研究仍然是一个难点.基于严密数学理论的微分同胚Demons算法是图像配准的著名算法,为解决大形变配准问题提供了重要基础.基于对微分同胚Demons算法的研究结合流形学习的思想提出一种大形变图像配准的新算法(MRL算法).新算法通过挖掘图像的局部和全局流形信息改进微分同胚Demons速度场的更新,更好地保持图像的拓扑结构.对比实验结果表明,本文所提出的算法能够快速高精度地实现大形变图像的配准. A registration algorithm for large deformation images is porposed. Since image information and topological structure undergo great changes with large deformation, image registration for large deformation images is a challenging work. The diffeomorphic demons algorithm, based on strict mathematical theory, is a famous image registration algorithm, which provides an important basis to solve the problem of large deformation image registration. Based on the study of the diffeomorphic demons algorithm, by combining the ideas of manifold learning, this paper presents a new algorithm for large deformation image registration (called MRL). The new proposed algorithm improves the diffeomorphic demons velocity field up by capturing both local and global manifold information of the image, and better maintains the topology of the image. Comparative experiment results show that the algorithm can quickly realize large deformation registration with a higher precision.
出处 《自动化学报》 EI CSCD 北大核心 2015年第8期1461-1470,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61105085 61373127 61170143) 辽宁省教育厅基金(L2014427)资助~~
关键词 图像配准 微分同胚Demons 流形 大形变 Image registration, diffeomorphic demons, manifold learning, large deformation
  • 相关文献

参考文献48

  • 1Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N. iLogDemons: a Demons-based registration algorithm for tracking incompressible elastic biological tissue. International Journal of Computer Vision, 2011, 92(1): 92-111. 被引量:1
  • 2Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Transactions on Medical Imaging, 2013, 32(7): 1153-1190. 被引量:1
  • 3Broit C. Optimal Registration of Deformed Images [Ph. D. dissertation], University of Pennsylvania, 1981. 被引量:1
  • 4Bajscy R, Kovacic S. Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 1989,46(1): 1-21. 被引量:1
  • 5Pennec X, Stefanescu R, Arsigny V, Fillard P, Ayache N. Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Proceedings of the 8th International Conference Medical Image Computing and Computer Assisted Intervention-MICCAI 2005. Palm Springs, CA, USA: Springer, 2005. 943-950. 被引量:1
  • 6Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage, 2007, 38(1): 95-113. 被引量:1
  • 7Christensen G E, Rabbitt R D, Miller M 1. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 1996, 5(10): 1435-1447. 被引量:1
  • 8Chiang M C, Leow A D, Klunder A D, Dutton R A, Barysheva M, Rose S E, McMahon K L, de Zubicaray G I, Toga A W, Thompson P M. Fluid registration of diffusion tensor images using information theory. IEEE Transactions on Medical Imaging, 2008, 27(4): 442-456. 被引量:1
  • 9Benchemin S S, Barron J L. The computation of optical flow. ACM Computing Surveys, 1995, 27(3): 433-466. 被引量:1
  • 10Bruhn A, Weickert J, Schnorr C. Lucaa/Kanade meets Horrr/ Schunck: combining local and global optic flow methods. International Journal of Computer Vision, 2005, 61(3): 211-231. 被引量:1

二级参考文献42

  • 1HU Jie, ZHANG Yujun, LI Peng, WANG Hui, HUANG Lan & HU YuanzhongState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China,Department of Physics, Tsinghua University, Beijing 100084, China,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Micro-mechanical analysis of dynamic processes of nanomanipulation[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):88-92. 被引量:28
  • 2彭晓明,陈武凡,马茜.基于B样条的弹性点配准方法[J].中国图象图形学报,2007,12(6):1079-1085. 被引量:6
  • 3Brown L G. A survey of image registration techniques. ACM Computing Surveys (CSUR), 1992, 24(4): 325-376. 被引量:1
  • 4Thirion J P. Image matching as a diffusion process: an anal- ogy with MaxwelVs demons. Medical Image Analysis, 1998, 2(3): 243-260. 被引量:1
  • 5Vercauteren T, Pennec X, Perchant A, Ayache N. Sym- metric log-domain diffeomorphic registration: a demons- based approach, h4edical Image Computing and Computer- Assisted Intervention - MICCAI 2008. Berlin Heidelberg: Springer 2008. 754-761. 被引量:1
  • 6Tang T W H, Chung A C S. Non-rigid image registration using graph-cuts. Medical Image Computing and Computer- Assisted Intervention - MICCAI 2007. Berlin Heidelberg: Springer 2007. 916-924. 被引量:1
  • 7Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral demons-image registration via global spectral cor- respondence. Computer Vision-ECCV 2012. Berlin Heidel- berg: Springer 2012. 30-44. 被引量:1
  • 8Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral log-demons: diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 2014, 107(3): 254-271. 被引量:1
  • 9Fowlkes C, Belongie S, Clmng F, Malik J. Spectral grouping using the Nystr6m method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225. 被引量:1
  • 10Talwalkar A, Rostamizadeh A. Matrix coherence and the Nystr6m methods. In: Proceedings of the 26th Conference in Uncertainty in Artificial Intelligence. arXiv preprint arXiv: 1004.2008, 2010. 被引量:1

共引文献40

同被引文献32

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部