期刊文献+

基于近邻传播学习的半监督流量分类方法 被引量:14

Semi-supervised Traffic Identification Based on Affinity Propagation
下载PDF
导出
摘要 准确的流量分类是进行网络管理、安全检测以及应用趋势分析的基础.针对完全监督和无监督分类的缺陷,提出了一种基于近邻传播学习的半监督流量分类方法.通过引入"近邻传播聚类"机制构建分类模型,使得分类器实现过程简单、运行高效.应用"半监督学习"的思想,抽象出少量已标记样本流约束和流形空间先验信息,定义了"流形相似度"的距离测度,既降低了标记流量样本的复杂度,又提高了流量分类器的性能.理论分析和实验结果表明:算法具有较高的分类准确性和较好的凝聚性. Accurate traffic identification is the keystone of network management,security diagnosis and application prediction analysis.Aiming at the deficiencies of supervised and unsupervised classified methods,we present a novel scheme called semi-supervised internet traffic identification based on affinity propagation(AP).In order to circumvent the problem of choosing initial points,the method introduces affinity propagation clustering to construct classification model simply and effectively.Based on the idea of semi-supervised learning,a few restrictions of labelled flows and priori manifold distribution of sampled space are abstracted.Also,manifold similarity is defined.Henceforth,the semi-supervised method can not only largely reduce the complexity of marking sampled flows,but also nicely improve the performance of the classifier.Theoretical analysis and experimental results show that the algorithm can achieve higher accuracy and better aggregation.
出处 《自动化学报》 EI CSCD 北大核心 2013年第7期1100-1109,共10页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2012CB312901 2012CB312905) 国家高技术研究发展计划(863计划)(2011AA01A103)资助~~
关键词 流量分类 半监督学习 近邻传播聚类 流形相似度 Traffic identification semi-supervised learning affinity propagation(AP) clustering manifold similarity
  • 相关文献

参考文献2

二级参考文献22

  • 1HU Jie, ZHANG Yujun, LI Peng, WANG Hui, HUANG Lan & HU YuanzhongState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China,Department of Physics, Tsinghua University, Beijing 100084, China,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Micro-mechanical analysis of dynamic processes of nanomanipulation[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):88-92. 被引量:28
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3Jolliffe I T. Principal Component Analysis (Second Edition). New York: Springer-Verlag, 2002. 被引量:1
  • 4Cox T F, Cox M A A. Multidimensional Scaling. London: Chapman and Hall, 1994. 被引量:1
  • 5Rowels S T, Saul L K. Nonlinear dimensionality reduc- tion by locally linear embedding. Science, 2000, 290(5500): 2323-2326. 被引量:1
  • 6Donoho D L, Grimes C. Hessian eigeamaps: locally linear embedding, techniques for high-dimensional data. Proceed- ings of the National Academy of Sciences, 2003, 100(10): 5591-5596. 被引量:1
  • 7Min W L, Lu K, He X F. Locality pursuit embedding. Pat- tern Recognition, 2004, 37(4): 781-788. 被引量:1
  • 8Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientitic Computing, 2004, 26(1): 313-338. 被引量:1
  • 9Yang L. Alignment of overlapping locally scaled patches for multidimensional sealing and dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2008, 30(3): 438-450. 被引量:1
  • 10Wang J, Zhang Z Y, Zha H Y. Adaptive manifold learning. In: Proceedings of the Neural Information Processing Sys- tems. Vancouver, Canada: The MIT Press, 2004. 1473-1480. 被引量:1

共引文献31

同被引文献111

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部