期刊文献+

多选择背包问题的人工蜂群算法 被引量:5

Artificial bee colony algorithm for multi-choice knapsack problem
下载PDF
导出
摘要 多选择背包问题是组合优化中的NP难题之一,采用一种新的智能优化算法——人工蜂群算法进行求解。该算法通过雇佣蜂、跟随蜂和侦察蜂的局部寻优来实现全局最优。基于算法实现的核心思想,用MATLAB编程实现,对参考文献的算例进行仿真测试。与其他算法进行了比较,获得了满意的结果。这说明了算法在解决该问题上的可行性与有效性,拓展了人工蜂群算法的应用领域。 Multi-choice knapsack problem(MCKP) is NP hard as one of combinatorial optimization. This paper proposed a new intelligent optimization algorithm artificial bee colony (ABC) algorithm to solve MCKP. The algorithm obtained global optimum through the local search of the employed bees, follower bees and scout bees. It presented the main idea of the algorithm for MCKP and implemented on microcomputer by MATLAB. Through a kind of computational instances, it compared with other algorithms, and it obtains the satisfactory results, which shows the feasibility and effectiveness of the proposed algorithm, expanding the applications of ABC.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期862-864,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(70871081) 上海市重点学科建设资助项目(S30504)
关键词 多选择背包问题 人工蜂群算法 组合优化 智能优化算法 multi-choice knapsack problem artificial bee colony algorithm combinatorial optimization intelligent optimization algorithm
  • 相关文献

参考文献7

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396
  • 2GEN M, CHENG R, SASAKI M. Multiple-choice knapsack problem using genetic algorithms [ C ]//Advances in Engineering Design and Automation Research Ⅱ. 1998 : 1127-1132. 被引量:1
  • 3贺毅朝,寇应展,陈致明.求解多选择背包问题的改进差分演化算法[J].小型微型计算机系统,2007,28(9):1682-1685. 被引量:14
  • 4KARABOGA D. An idea based on honey bee swarm for numerical op- timization, Technical Report TR06[R]. Turkey :Computer Enginee- ring Department, Erciyes University, 2005. 被引量:1
  • 5KARABOGA D, BASTURK B. On the performance of artificial bee colony( ABC ) algorithm[ J]. Applied Soft Computing ,2008,8 ( 1 ) : 687- 697. 被引量:1
  • 6樊小毛,马良.0-1背包问题的蜂群优化算法[J].数学的实践与认识,2010,40(6):155-160. 被引量:23
  • 7SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem [ J ]. Applied Soft Computing, 2009,9(2) :625-631. 被引量:1

二级参考文献18

  • 1李慧贤,程春田,庞辽军.网格环境下的高效动态任务调度算法[J].华南理工大学学报(自然科学版),2006,34(1):82-85. 被引量:9
  • 2马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2. 被引量:100
  • 3Karaboga D. An Idea Based On Honey Bee Swarm for Numerical Optimization[R]. Technical Report-TR06, Erciyes University, 2005. 被引量:1
  • 4Syslo, M. M, et al. Discrete Optimization Algorithms[M]. Englewood Cliffs, New Jersey: Prentice- Hall, 1983: 118-165. 被引量:1
  • 5Vesterstrom J,Thomsen R.A comparative study of differential evolution,particle swarm optimization,and evolutionary algorithm on numerical Benchmark problems[C].Evolutionary Computation,CEC2004 Volume 2,1980-1987. 被引量:1
  • 6Abbas H A,Sarker R,Newton C.PDE:a pareto-frontier diffe rential evolution approach for multi-objective optimization problems[C].In:Proceedings of the 2001 Congress on Evolutionary Computation,IEEE,Piscataway,NJ,USA.ISBN 0-7803-6657-3.2001,Vol.2,971-978. 被引量:1
  • 7Parsopoulos K E,Tasoulis D K,Pavlidis N G,et al.Vector evaluated differential evolution for multiobjective optimization[C].Evolutionary Computation Proceedings of the 2001,Volume:2,971-978. 被引量:1
  • 8Babu B V,Anbarasu B.Multi-objective differential e-volution (MODE) an evolutionary algorithm for multiobjective optimization problem (MOOPs)[EB/OL].http://discovery.bits-pilani.ac.in/discipline/chemical/BVb/. 被引量:1
  • 9Zhang W J,Xie X F.DEPSO:hybrid particle swarm with differential evolution operator[Z].IEEE 0-7803-7952-7,2003. 被引量:1
  • 10Gen M,Cheng R,Sasaki M.Multiple-choice knapsack problem using genetic algorithms[Z].Advances in Engineering Design and Automation Research Ⅱ,Maui HI,1998,1127-1132. 被引量:1

共引文献429

同被引文献45

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部