期刊文献+

融合MODIS与Landsat数据生成高时间分辨率Landsat数据 被引量:43

A model for spatial and temporal data fusion
下载PDF
导出
摘要 遥感数据时空融合技术是一种低空间分辨率影像与中空间分辨率影像在时间域和空间域的融合技术,利用遥感数据时空融合技术获得的融合影像既具备低空间分辨率影像的高时间分辨率特征,又具备中空间分辨率影像的高空间分辨率特征.提出了一种新的遥感数据时空融合方法(STDFA).该方法从时序MODIS数据中提取地物的时间变化信息,结合早期Landsat-TM影像的纹理信息,融合出具有MODIS时间分辨率和TM空间分辨率的影像.以江苏省南京市江宁区为研究区,以Landsat红波段和近红外波段为融合波段,对该方法进行了测试.结果显示,该方法能够产生高精度的中空间分辨率影像,融合影像与真实影像间的相关系数达到0.939.融合影像计算的NDVI与真实中空间分辨率影像计算的NDVI间的相关性达到0.938. Spatial and temporal fusion of remote sensing data is a technology that can generate dense time series and high spatial resolution data whose spatial resolution is similar with high spatial resolution date,and temporal resolution is the same as the one with high temporal resolution data.This paper presented a new spatial and temporal data fusion model(STDFM) for blending Landsat and MODIS surface reflectance.Temporal change information was detected from sequence coarser resolution surface images,and new high resolution reflectance was predicted from former high resolution reflectance.This algorithm was tested in red and near-infrared MODIS and Landsat ETM+ images,and over a study area in Jiangning country,Nanjing,Jiangsu,China.Results showed that STDFM was able to produce images very similar with actual observed images.The correlation coefficient r between synthetic imageries and actual observations was 0.939.The correlation coefficient r between NDVI calculated by synthetic imageries and actual observations was 0.938.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第1期80-84,共5页 Journal of Infrared and Millimeter Waves
基金 高分辨率对地观测重大专项 国家自然基金项目(41001209 41001269) 杭州师范大学遥感与地球科学研究院开放基金~~
关键词 遥感 图像处理 MODIS LANDSAT 时空融合 remote sensing image processing MODIS landsat data fusion
  • 相关文献

参考文献9

  • 1Lunetta R S, Lyon J G, Guindon B, et al. North Americal landscape characterization dataset development and fusion issues[ J]. Photogrammetric Engineering & Remote Sens- ing, 1998,64:821 - 829. 被引量:1
  • 2Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting dai- ly Landsat surface reflectance [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:2207-2218. 被引量:1
  • 3Settle J J, Drake N A. Linear mixing and the estimation of groundcover proportion [ J ]. International Journal of Remote Sensing, 1993,14 : 1159 - 1177. 被引量:1
  • 4Cherechali S, Amram O, Flouzat G.. Retrieval of temporal profiles of reflectances from simulated and real NOAA- AVHRR data over heterogeneous landscapes [ J ]. Interna- tional Journal of Remote Sensing, 2000,21 : 753 - 775. 被引量:1
  • 5Zhukov S, Oertel D, Lanzl F, et al. Unmixing-based multi- sensor muhiresolution image fusion [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37:1212- 1226. 被引量:1
  • 6Maselli F. Definition of spatially variable spectral endmem- bers by locally calibrated multivariate regression analyses [ J]. Remote Sensing of Environment,2001,75:29 - 38. 被引量:1
  • 7Lorenzo Busetto , Michele Meronib, Roberto Colombo. Combining medium and coarse spatial resolution satellite da- ta to improve the estimation of sub-pixel NDVI time series [J]. Remote Sensing of Environment, 2008, 112:118 - 131. 被引量:1
  • 8Thomas Hilker, Michael A Wulder, Nicholas C Coops, et al. A new data fusion model for high spatial- and temporal- resolution mapping of forest disturbance based on Landsat and MODIS [ J ]. Remote Sensing of Environment, 2009, 113 : 1613 - 1627. 被引量:1
  • 9Ray T W, Murray B C. Nonlinear spectral mixing in desert vegetation[J]. Rem. Sens. Environ. 1996,55:59-64. 被引量:1

同被引文献482

引证文献43

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部