期刊文献+

基于时空数据融合模型的TM影像云去除方法研究 被引量:6

Research on Cloud Removal from Landsat TM Image based on Spatial and Temporal Data Fusion Model
原文传递
导出
摘要 针对已提出的各类云去除方法在实际应用中存在的局限性,将时空数据融合模型引入到云去除方法中。首先基于MODIS数据提供的时间维变化信息和辅助时相TM数据提供的空间信息,应用增强时空适应反射率融合模型(ESTARFM)得到了目标时相似TM合成数据;然后用TM合成数据替换掉目标时相TM影像中被云及其阴影覆盖区域的数据。在修复后的影像中替换区域与非云区域色调基本一致。通过非云区TM合成数据间接对替换云及其阴影区数据的精度进行定量评价。结果表明:相对于真实TM影像,非云区域合成数据各波段均值差异都在1%以内;各波段的相对误差分别为16.29%、12.92%、13.47%、12.87%、9.71%和11.84%,且各波段的相关系数均大于0.7;非云及其阴影区融合影像数据间接表明填补云及阴影区数据各波段的总体精度优于83%。因此,所提出的方法能够修复TM影像中被云及其阴影覆盖区域的数据,提高MODIS与TM数据的利用率。 To solve the limitation of the existing models for cloud removal in practical application,in this paper,a new method was proposed based on spatial and temporal data fusion models.First,the data,like TM image at target time was composed by enhanced spatial and temporal adaptive reflectance fusion model(ESTARFM)based on temporal change of MODIS data and spatial information of auxiliary TM data;Then,the pixels in target TM image where were contaminated by clouds and shades which were replaced by the compose data.The result show that the color of the replaced area is consistent with the color of area uncontaminated by clouds and shade.Ultimately,the precision of the replaced data is verified indirectly based on the data of target TM image and composed image without cloud and its shade cover.Compared to actual image,the result showed that the relative difference of individual band of composed data is less than1%;The mean relative error of each band are 16.29%,12.92%,13.47%,12.87%,9.71%,11.84%,respectively;All correlation coefficients are greater than 0.7;The accuracy of non-cloud and non-shade area fusion data indicates indirectly that the accuracy of each band of the data to fill the area,contaminated by cloud and shade,is better than 83%.Therefore,the method proposed in this paper which can repair the data contaminated by clouds and shades from TM image and improve MODIS and TM data utilization level.
出处 《遥感技术与应用》 CSCD 北大核心 2015年第2期312-320,共9页 Remote Sensing Technology and Application
基金 自然科学基金(杰青)项目"高寒草地生态水文学机理与冻土生态水文模拟研究"(40925002) 四川省地理国情监测工程技术研究中心开放基金项目"基于中分辨率遥感影像的川东丘陵地区土地覆盖变化监测研究"(GC201413) "地理国情监测中城市发展变化监测方法研究与应用"(GC201413)
关键词 TM MODIS 云及其阴影检测 ESTARFM 云去除 TM MODIS Cloud and its shade detection ESTARFM Cloud removal
  • 相关文献

参考文献21

  • 1Gao, Feng,Masek, Jeff,Schwaller, Matt,Hall, Forrest.On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing . 2006 被引量:2
  • 2Tian B,Shaikh M A,Azimi-Sadjadi M R,et al.A Study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks . 1999 被引量:1
  • 3David P. Roy,Junchang Ju,Philip Lewis,Crystal Schaaf,Feng Gao,Matt Hansen,Erik Lindquist.Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment . 2008 (6) 被引量:1
  • 4Justice, Christopher O.,Vermote, Eric,Townshend, John R.G.,Defries, Ruth,Roy, David P.,Hall, Dorothy K.,Salomonson, Vincent V.,Privette, Jeffrey L.,Riggs, George,Strahler, Alan,Lucht, Wolfgang,Myneni, Ranga B.,Knyazikhin, Yuri,Running, Steve.Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing . 1998 被引量:1
  • 5WARREN B COHEN,SAMUEL N.GOWARD.Landsat’’s Role in Ecological Applications of Remote Sensing. Bioscience . 2004 被引量:1
  • 6Din-Chang Tseng,Hsiao-Ting Tseng,Chun-Liang Chien.Automatic cloud removal from multi-temporal SPOT images[J]. Applied Mathematics and Computation . 2008 (2) 被引量:1
  • 7黄永喜,李晓松,吴炳方,董泰锋.基于改进的ESTARFM数据融合方法研究[J].遥感技术与应用,2013,28(5):753-760. 被引量:6
  • 8梁栋,孔颉,胡根生,黄林生.基于支持向量机的遥感影像厚云及云阴影去除[J].测绘学报,2012,41(2):225-231. 被引量:28
  • 9Qing Cheng,Huanfeng Shen,Liangpei Zhang,Qiangqiang Yuan,Chao Zeng.Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model[J]. ISPRS Journal of Photogrammetry and Remote Sensing . 2014 被引量:1
  • 10冯春,马建文,戴芹,陈雪.一种改进的遥感图像薄云快速去除方法[J].国土资源遥感,2004,16(4):1-3. 被引量:34

二级参考文献47

共引文献129

同被引文献71

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部