期刊文献+

一种基于数学形态学的分形维数估计方法 被引量:13

Fractal Dimension Estimation Based on Mathematical Morphology
下载PDF
导出
摘要 对于分形维数的估计是基于分形理论的纹理图像分割算法中最重要的环节。由于使用固定划分的规则网格 ,常用的基于盒计数的分形维数估计算法及其各种改进方法的误差较大 ;而传统的形态学维数估计算法虽然在准确性上有一定提高 ,但其时间复杂度偏高。为此提出了一种基于可变结构元的数学形态学分形维数估计方法(VSEM)。该方法将灰度图像视为一个三维空间中的曲面 ,使用一组不同尺度的结构元分别度量该曲面 ,根据度量结果与尺度之间满足的指数率来估计图像表面的分形维数。通过恰当的选择结构元和使用递推技术得到不同尺度下的膨胀结果 ,新方法成功地弥补了现有算法的不足。本文使用了一组合成纹理和一组自然纹理来评估几种常见的分形维数估计算法。结果显示 ,本文提出的新方法能够在较小的时间复杂度下 ,得到更为精确的估计结果。最后 ,将该方法应用于遥感图像的分割。与其他常用的分形分割算法相比 ,使用该方法估计的分形维数和图像的临域均值作为特征能够得到更好的分割结果。在对比分析和分割实验中表现出的良好性能说明本文提出的分形维数估计算法可以有效地应用于纹理图像分割。 The estimation of fractal dimension is essential in fractal-based image segmentation. The most popular estimation algorithm is based on box-counting. However, the regular partition and counting methods used in this scheme produces less accurate results. Though morphological fractal estimation is more accurate, the traditional method is very time consuming. In this paper, a new morphological fractal dimension estimation algorithm based on variable structure elements (SE) is proposed. The digitized gray level image is treated as a three-dimensional surface, which is measured under different scales by performing dilations by a series of structuring elements with different sizes on it. And the fractal dimension of it can be estimated from the power law followed by the metrics of the surface and the size of the structuring elements. By properly choosing the structure elements and constructing iterative dilations, the new method achieves better accuracy as well as efficiency. Comparative experiments on both synthetic textures and natural textures show that the proposed approach gives better results than five other commonly used estimation methods. Finally, the estimated fractal dimension and local average gray level are used as characters to segment remote sensing images, comparing with other fractal-based methods, it provides more meaningful segmentation. All these satisfied experimental results demonstrate that the proposed estimation can be successfully applied to texture segmentation.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第6期760-766,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目 ( 60 14 10 0 2 ) 南昌航空工业学院测控中心开放实验室基金项目 ( KG2 0 0 10 40 0 1)
关键词 分形维数 分形理论 图像分割 维数估计 VSEM 数学形态学 fractal dimension, image segmentation, mathematical morphology
  • 相关文献

参考文献13

  • 1Mandeibrot B B. The Fractal Genmetry of Nature[M], New York, W, H. Freeman, 1983. 被引量:1
  • 2Pentland A P. Fractal based description of natural scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661-674. 被引量:1
  • 3Liu Yu-xin, Li Yan-da. Image feature extraction and segmentation using frataldimension[A]. In: Proceedings of ICSP'97[C], Singapore, 1997:975-979. 被引量:1
  • 4Sarkar N. Chaudhuri B B. An efficient differential box-counting approach to compute fractal dimcnsion of image [J]. IEEE Transactions on System Man and Cybernetics. 1994.24(1):115-120. 被引量:1
  • 5Jin X C, Ong S H, Jayasooriah. A practical method for estimation fractal dimension[J]. Pattern Recognition Letters,1995.16(5): 457-464. 被引量:1
  • 6Samarabandu J, Acharye R, Hausmann E, et al. Analysis of bone X-rays using morphological fractals[J]. IEEE Transactions on Medical Imaging, 1993, 12(3) : 466-470. 被引量:1
  • 7Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(1): 72-77. 被引量:1
  • 8李厚强,刘政凯,林峰.基于分形理论和Kohonen神经网络的纹理图像分割方法[J].计算机工程与应用,2001,37(7):44-46. 被引量:13
  • 9谢和平编译..分形几何 9 数学基础与应用[M].重庆:重庆大学出版社,1991.
  • 10Peleg S, Naor J. Hartley R. et al. Multiple resolution texture analysis and classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984. 6(4): 518-523. 被引量:1

二级参考文献1

共引文献12

同被引文献194

引证文献13

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部