期刊文献+

一种基于乘性可变尺度形态分形模型的分割新算法 被引量:1

Fractal Segmentation Algorithm Based on Mathematical Morphology with Multiple Variable Structure Elements
下载PDF
导出
摘要 在定义乘性可变尺度结构算子对数学形态维分形模型进行优化和改进的基础上,提出了一种基于提取分形特征参数的图像分割算法。首先定义并比较了加性和乘性可变尺度形态结构算子,并以此为基础进行形态学膨胀运算,提取归一化模型下的数学形态维分形维数,再用分形特征维数调制灰度值,以拉开各个灰度级间的距离,有效地增大了目标和背景的差异,最后进行自适应阈值分割。大量对比仿真实验取得了良好的分割效果,并且证明了本算法的有效性和可靠性。 Based on defining variable structure elements to optimize fractal morphology model, a fractal dimension segmentation algorithm was proposed to get better results. At first, addition and multiple structure elements were defined and compared to fit in morphology operations. Then, fractal morphology dimension was abstracted and used to modulate gray scales, in order to increase contrast of target and background. At last, a threshold was automatically determined for segmentation. Abundance experiment data support its availability and credibility.
出处 《计算机应用研究》 CSCD 北大核心 2007年第4期151-153,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2003AA823050)
关键词 数学形态维 归一化 分形维数 阈值分割 分形调制 fraetal morphology dimension normalized fractal dimension threshold segmentation fractal modulation
  • 相关文献

参考文献7

  • 1PENTLAND A P. Fractal-based description of nature sciences [ J ].IEEE Trans. on Pattern Analysis and Machine Intelligence,1984,6(6) :661-674. 被引量:1
  • 2RAFAEL G. Digital image processing[ M]. 2nd edition.北京:电子工业出版社.2003:20—53. 被引量:1
  • 3崔屹.图像处理与分析——数学形态学方法及应用[M].北京:科学出版社,2002:17-34. 被引量:1
  • 4PELEG S, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification [ J ]. IEEE Trans. PAMI, 1984,6 (4) :518-523. 被引量:1
  • 5SAMARABANDU J, ACHARYA R, HAUSMANN E, et al, Analysis of bone X-rays using morphological fractals [ J ].IEEE Trans. on Medical Imaging, 1993,12 ( 3 ) :466- 470. 被引量:1
  • 6HEIJMANS H. Morphological image operators[ M]. New York: Academic Press Inc. , 1994:42-78. 被引量:1
  • 7夏勇,赵荣椿,江泽涛.一种基于数学形态学的分形维数估计方法[J].中国图象图形学报(A辑),2004,9(6):760-766. 被引量:13

二级参考文献12

  • 1Mandeibrot B B. The Fractal Genmetry of Nature[M], New York, W, H. Freeman, 1983. 被引量:1
  • 2Pentland A P. Fractal based description of natural scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661-674. 被引量:1
  • 3Liu Yu-xin, Li Yan-da. Image feature extraction and segmentation using frataldimension[A]. In: Proceedings of ICSP'97[C], Singapore, 1997:975-979. 被引量:1
  • 4Sarkar N. Chaudhuri B B. An efficient differential box-counting approach to compute fractal dimcnsion of image [J]. IEEE Transactions on System Man and Cybernetics. 1994.24(1):115-120. 被引量:1
  • 5Jin X C, Ong S H, Jayasooriah. A practical method for estimation fractal dimension[J]. Pattern Recognition Letters,1995.16(5): 457-464. 被引量:1
  • 6Samarabandu J, Acharye R, Hausmann E, et al. Analysis of bone X-rays using morphological fractals[J]. IEEE Transactions on Medical Imaging, 1993, 12(3) : 466-470. 被引量:1
  • 7Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(1): 72-77. 被引量:1
  • 8Peleg S, Naor J. Hartley R. et al. Multiple resolution texture analysis and classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984. 6(4): 518-523. 被引量:1
  • 9Feng Jic, Lin Wei-chung, Chen Chin-tu. Fractal box-counting approach to fractal dimension estimation[A], In, Proceedings of ICPR^+ 96[C],Vienna. 1996: 854-858. 被引量:1
  • 10Serra J. Image Analysis and Mathematical Morphology(vol. 1)[M]. London, Academic Press, 1982. 被引量:1

共引文献12

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部