期刊文献+

Gd^(3+)与RGD共修饰量子点用于胰腺癌细胞的荧光及MR双模态成像 被引量:7

Gd^(3+) and RGD Functionalized Quantum Dots for Fluorescent and MR Dual-modality Imaging of Pancreatic Cancer Cells
下载PDF
导出
摘要 结合磁共振成像(MRI)和荧光成像技术,以钆离子(Gd3+)、量子点及精氨酸(R)-甘氨酸(G)-天冬氨酸(D)(RGD)多肽等为功能单元,采用纳米载体组装技术构建了MRI弛豫率/荧光效率高和靶向性强的Gd3+与RGD共修饰的量子点双模态纳米探针(QDs@Gd3+-RGD),并将其用于胰腺癌细胞的双模态成像.实验结果表明,QDs@Gd3+-RGD双模态纳米探针具有较高的弛豫率,且能对胰腺癌patu8988细胞进行荧光和T1-weighted MR成像. Though early diagnosis of pancreatic cancer is difficult,it brings challenges and opportunities to the molecular imaging.The existing diagnostic imaging technologies are limited as a result of single functiona-lity,making it difficult for accurate diagnosis.In this work,magnetic resonance image(MRI) and fluorescence imaging were combined by several key contrast agents including gadolinium ion,quantum dots(QDs) and arginine(R)-glycine(G)-D-aspartic acid(D)(RGD) for high relaxation rate,strong fluorescent emission and good targeting.The integrated dual-modality QDs@Gd3+-RGD nanoprobes were used for dual-modality imaging of pancreatic cancer cells.TEM and dynamic light scattering(DLS) results indicate complete dispersion of QDs@Gd3+-RGD nanoprobes in water.In vitro relaxivity measurement shows high relaxation rate of QDs@Gd3+-RGD nanoprobes.Their r1 and r2 are 7.6 and 9.5 L·mmol-1·s-1,respectively.Fluorescent and MR dual-modality imaging suggest the prepared QDs@Gd3+-RGD nanoprobes can sever as both fluorescent and MR imaging of patu8988 pancreatic cancer cells.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第2期378-382,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51003078) 上海市科委基础研究重点项目(批准号:10JC1412900) 同济大学青年优秀人才培养计划项目(批准号:2009KJ072) 苏州大学现代丝绸国家工程实验室基金资助
关键词 双模态成像 量子点 RGD 胰腺癌 Dual-modality imaging Quantum dots Arginine(R)-glycine(G)-D-aspartic acid(D)(RGD) Pancreatic cancer
  • 相关文献

参考文献19

  • 1Michalski M. H., Chen X.. Eur. J. Nucl. Med. Mol. Imag. [J], 2011,38:358-377. 被引量:1
  • 2Rudin M. , Weissleder R.. Nature Reviews Drug Discovery[J], 2003, 2:123-131. 被引量:1
  • 3Hargreaves R. J.. Clin. Pharmacol. Ther. [J], 2008, 83:349-353. 被引量:1
  • 4Arthurs O. J., Gallagher F. A.. Pediatr. Radiol. [J], 2011,41:185-98. 被引量:1
  • 5Pysz M. A., Gambhir S. S., Willmann J. K.. Clin. Radiol. [J], 2010, 65:500-516. 被引量:1
  • 6RyuJ., ParkH. Y., KimK., KimH., Yoo J. H., KangM., Im K., Grailhe R., SongR.. J. Phy. Chem. C[J], 2010, 114: 21077-21082. 被引量:1
  • 7Salerno M.. J. Nucl. Cardiol. [J] , 2010, 17:316-327. 被引量:1
  • 8张兵波,宫晓群,李卓权,郭方方,蔡少瑜,孔继烈,杨秋花,马浩,常津,时东陆.用于疾病诊断的Gd^Ⅲ/量子点多模态成像探针的构建[J].高等学校化学学报,2010,31(5):982-985. 被引量:15
  • 9Li J. J., Wang Y. A., Guo W. Z., Keay J. C., Mishima T. D., Johnson M. B., Peng X. G.. J. Am. Chem. Soc. [J], 2003, 125:12567-12575. 被引量:1
  • 10Lees E. E. , Nguyen T. L. , Clayton A. H. A. , Mulvaney P. , Muir B. W.. ACS Nano[J], 2009, 3:1121-1128. 被引量:1

二级参考文献15

  • 1Orel S. G.. Radiographics[J] , 1998, 18:903-912. 被引量:1
  • 2Phair R. D., Misteli T.. Nature[J] , 2000, 404:604-609. 被引量:1
  • 3Yang H. , Santra S. , Walter G. A. , et al.. Adv. Mater. [J] , 2006, 18:2890-2894. 被引量:1
  • 4Mulder W. J. M. , Koole R. , Brandwijk R. J. , et al.. Nano Lett. [J] , 2006, 6:1--6. 被引量:1
  • 5MeCann C. M. , Waterman P. , Figueiredo J. L. , et al.. Neuroimage[J], 2009, 45:360-369. 被引量:1
  • 6BaileyR. E., NieS. M.. J. Am. Chem. Soc.[J], 2003, 125:7100-7106. 被引量:1
  • 7PengZ. A., PengX. G.. J. Am. Chem. Soc.[J], 2001, 123:183-184. 被引量:1
  • 8Zhang B. B. , Gong X. Q. , Hao L. J. , et al.. Nanotechnology[J] , 2008, 19:465604-1-465604-9. 被引量:1
  • 9Zhang B. B., Cheng J., LiD. N., etal.. Mat. Sci. Eng. B[J], 2008, 149(1): 87-92. 被引量:1
  • 10SoM. K., Xu C. J. , LoeningA. M., et al.. Nat. Biotech.[J], 2006, 24(3): 339- 343. 被引量:1

共引文献14

同被引文献66

  • 1杜施霖,王吉耀,陆伟跃.含有精-甘-天冬氨酸序列的环肽与大鼠肝星状细胞体外结合的特性[J].中华肝脏病杂志,2005,13(5):362-365. 被引量:11
  • 2席国喜,姚路,路迈西.水热法在无机粉体材料制备中的研究进展[J].材料导报,2007,21(F05):134-136. 被引量:16
  • 3Lu Z,Zhu Z,Zheng X. Biocompatible fluorescence-enhanced ZrO(2)-CdTe quantum dot nanocomposite for in vitro cell imaging[J].{H}NANOTECHNOLOGY,2011,(15):155604. 被引量:1
  • 4Rosenthal SJ,Chang JC,Kovtun O. Biocompatible quantum dots for biological applications[J].{H}CHEMISTRY & BIOLOGY,2011,(01):10-24. 被引量:1
  • 5Ohyabu Y,Kaul Z,Yoshioka T. Stable and nondisruptive in vitro/in vivo labeling of mesenchyrnal stem cells by internalizing quantum dots[J].{H}Human Gene Therapy,2009,(03):217-224. 被引量:1
  • 6Roy M,Niu CJ,Chen Y. Estimation of minimum doses for optimized quantum dot contrast-enhanced vascular imaging in vivo[J].{H}SMALL,2012,(11):1780-1792. 被引量:1
  • 7Xu P,Li J,Selke M. Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition[J].Int J Nanomedicine,2013.3729-3736. 被引量:1
  • 8Chang JC,Rosenthal SJ. Quantum dot-based single-molecule microscopy for the study of protein dynamics[J].{H}Methods in Molecular Biology,2013.71-84. 被引量:1
  • 9Soenen S J,Montenegro J M,Abdelmonem AM. The effect of nanoparticle degradation on poly (methacrylic acid) coated quantum dot toxicity:the importance of particle functionality assessment in toxicology[J].{H}ACTA BIOMATERIALIA,2013,(13):505-509. 被引量:1
  • 10Tang M,Xing T,Zeng J. Unmodified CdSe quantum induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons[J].{H}Environmental Health Perspectives,2008,(07):915-922. 被引量:1

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部