期刊文献+

理性密钥共享的扩展博弈模型 被引量:2

Rational secret sharing as extensive games
原文传递
导出
摘要 理性密钥共享体制通过引入惩罚策略使得参与者不会偏离协议,常采用的惩罚是一旦发现有人偏离就立即终止协议.这种惩罚策略有时导致惩罚人自身利益严格受损,从而降低了对被惩罚人的威慑.为了克服这一弱点,本文以扩展博弈为模型分析了理性密钥共享体制.首先给出(2,2)门限的理性密钥共享体制,证明了所给的协议是该博弈的一个序贯均衡,即经过任何历史之后坚持原协议仍然是每一个参与者的最优选择.特别地,在发现有人偏离后,协议所给出的惩罚策略既可以有效惩罚偏离者又能够完全维护惩罚人的利益.这是本文对前人设计的理性密钥共享体制的一个重要改进.然后针对将协议扩展到(t,n)门限情形,实现密钥分发人离线,达到计算的均衡等相关问题给出了一般的解决方案. The threat that comes from previously used punishment strategies in rational secret sharing is weak- ened because the punishment somtimes also causes loss to the punisher himself. In this paper, we first model 2-out-of-2 rational secret sharing in an extensive game with imperfect information, and then provide a strategy for achieving secret recovery in this game. Moreover, we prove that the strategy is a sequential equilibrium which means after any history of the game no player can benefit from deviations so long as the other players stick to the strategy. In particular, when a deviation is detected, the punishment executed by the punisher is still his optimal option. Therefor, by considering rational secret sharing as an extensive game, we design punishment strategies that effectively punish the deviants and meanwhile guarantee punishers' benefit. Hence, these punishments are more credible than previous ones. Except assuming the existence of simultaneous channels, our scheme can have dealer off-line and extend to the t-out-of-n setting, and also satisfies computational equilibria in some sense.
作者 张志芳 刘木兰 ZHANG ZhiFang;LIU MuLan(Key Laboratory of Mathematics Mechanization,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)
出处 《中国科学:信息科学》 CSCD 2012年第1期32-46,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60821002/F02 11001254)资助项目
关键词 理性密钥共享 扩展博弈 序贯均衡 博弈论 密码学 rational secret sharing, extensive game, sequential equilibrium, game theory, cryptography
  • 相关文献

参考文献10

  • 1Halpern J,Teague V.Rational secret sharing and multiparty computation[].Proceedings of theth STOC.2004 被引量:1
  • 2Katz J.Ruminations on defining rational MPC. http://www.daimi.au.dk/jbn/SSoRC2008/program . 2008 被引量:1
  • 3Osborne M,Rubinstein A.A Course in Game Theory[]..2004 被引量:1
  • 4Blakley GR.Safeguarding cryptographic keys[].Proceedings of AFIPS National Computer Conference.1979 被引量:1
  • 5Shamir A.How to share a secret[].Communications of the ACM.1979 被引量:1
  • 6Wegman M N,Carter J Lawrence.New hash functions and their use in authentication and set equality[].Journal of Computer and System Sciences.1981 被引量:1
  • 7Goldreich O.Foundations of Cryptography-Basic Tools[]..2001 被引量:1
  • 8DODIS Y,RABIN T.Cryptography and game theory[].Algorithmic Game Theory.2007 被引量:1
  • 9Fudenberg D,Tirole J.Game theory[]..1992 被引量:1
  • 10Kol G,,Naor M.Games for exchanging information[].Proc of STOC.2008 被引量:1

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部