期刊文献+

关于微粒群求解约束最优化罚函数的参数估计和统计分析 被引量:1

Parameter Estimation and Statistical Analysis of the Constrained Optimization Penalty Function to Be Solved by Particle Swarm Optimization
下载PDF
导出
摘要 微粒群算法已经成功地应用到优化方面,但并不是对所有的约束函数都有效。本文用五种方法来验证该观点,通过对测试函数结果的分析可以看到哪一种方法是最优的或是最坏的;采用五种惩罚策略函数方法,每一方法用五个微粒群算法来测试,从而得出哪一种方法和微粒群算法结合是最好的,并对这一直观的结论进行了理论上的解释。 Particle swarm optimization has been successtully applied to optimization, but it is not eHecuve on au of the constraint functions. This paper validates it through five measures, and analyzes the results of the test function in which we can find which is the best or the worst one, then we use five methods for the punishment function and each of them is tested by five particle swarm optimization methods, and we can decide which one is the best to be combined with particle swarm optimization, and it is explained theoretically.
作者 杨永
出处 《计算机工程与科学》 CSCD 北大核心 2009年第5期81-83,86,共4页 Computer Engineering & Science
关键词 微粒群算法 罚函数 正态分布 偏离度 统计算法 particle swarm optimization penalty function normal distribution deviation statistical algorithms
  • 相关文献

参考文献11

  • 1Coello C. Theoreticaland Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art[J]. Computer Methods in Applied Mechanics and Engineering, 2002,19(11-12) : 1245-1287. 被引量:1
  • 2Homaiffar A, Qi C, Lai S. Constrained Optimization Via Genetic Algorithms[J]. Simulation, 1994,62(4) : 242-254. 被引量:1
  • 3Joines J, Houck C. On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA's[C] ffProc of the 1st IEEE Conf on Evolutionary Computation, 1994:579-584. 被引量:1
  • 4Powell D, Skolnick M. Using Genetic Algorithms in Engi neering Design Optimization with Non-linear Constraints[C] ///Proc of the 5th Int 'l Conf on Genetic Algorithms, 1993: 424-430. 被引量:1
  • 5Kuri A. A Universal Eclectic Genetic Algorithm for Constrained Optimization[C]ffProc of the 6th European Congress on Intelligent Techniques & Soft Computing, 1998:518-522. 被引量:1
  • 6Shoenauer M, Xanthakis S. Constrained GA Optimization[C] //Proc of the 5 th Int ' l Conf on Genetic Algorithms, 1993 : 573-580. 被引量:1
  • 7Kuri A. A Comprehensive Approach to Genetic Algorithms in Optimization and Leaming[J].Theory and Applications, Computacion y Sistemas, 1999,2 (4) : 218-219. 被引量:1
  • 8Richardson J, Palmer M, Liepins G, et al. Some Guidelines for Genetic Algorithms with Penalty Functions[C] ffProc of the IEEE Int'l Conf on Evolutionary Computation, 1989:191-197. 被引量:1
  • 9Back T. Evolutionary Algorithms in Theory and Practice [M]. New York: Oxford University Press, 1996. 被引量:1
  • 10Coello C. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems[J].Computers in Industry, 2000,41(2) : 113-127. 被引量:1

同被引文献6

  • 1Stanley A O, Prabhat 14. Genetic algorithm based collabo- rative optimization of a tiltrotor configuration [ C ]//6th AIAA/ASME/ASCE/A14S/ASC Structures. StructuralDy- namics & Materials Conference. USA :AIAA,2005. 被引量:1
  • 2IALA. IALA recommendation A- 126 on the use of the au- tomatic identification system(AIS) in marine aids to navi- gation, edition 1 [ K ]. France: Saim Germain en Laye,2003. 被引量:1
  • 3文妤.粒子群算法的改进与应用[D].西安:西安理工大学,2010. 被引量:1
  • 4Coello C A ,Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [ J]. [EEE Trans on Evolutionary Compution ,2004,8 ( 3 ) :256 - 279. 被引量:1
  • 5李海燕,马明旭,黄章俊,井元伟.自适应罚函数协同优化算法[J].系统仿真学报,2009,21(19):6178-6182. 被引量:14
  • 6王联国,施秋红.自竞争粒子群优化算法[J].计算机应用与软件,2009,26(12):111-113. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部