期刊文献+

带差商信息的云搜索优化算法及其收敛性分析 被引量:6

Clouds Search Optimization Algorithm with Difference Quotient Information and its Convergence Analysis
下载PDF
导出
摘要 将云的生成、动态运动、降雨和再生成等自然现象与智能优化算法的思想融合,设计了一种新的智能优化算法——云搜索优化算法(Clouds Search Optimization Algorithm)。云团内部水滴可以产生差商信息来指导搜索,差商可以逼近梯度,且负差商与负梯度同样为函数值下降方向。基于此,进一步提出带差商信息的云搜索优化算法(Clouds Search Optimization Algorithm with Difference Quotient Information)。依据差商与梯度的近似关系,证明了DCSO具有类似经典的基于梯度的优化算法的收敛性,最优水滴可以收敛到极值点。benchmark函数的数值实验表明,CSO与DCSO都具有很强的寻优能力,且差商信息可以指导水滴迅速向极值点移动,大大提高了DCSO的收敛速度。 Clouds have many natural phenomena such as generation,dynamic movement,rainfall and regeneration.A novel intelligent optimization algorithm called clouds search optimization algorithm,or CSO was proposed by blending these natural phenomena of clouds with the ideas of intelligent optimization algorithms.Droplets inside a cloud can produce difference quotient information to guide the search.Difference quotient information can approximate gradient,and its reverse direction can guide function value's decline.On the basis of difference quotient's those properties,clouds search optimization algorithm with difference quotient information(DCSO) was also proposed.It proved to be convergent by using the relationship between difference quotient and gradient,and the convergence property is similar to classical gradient-based algorithm.Finally,the numerical experiments on benchmark functions show the excellent perfor-mance of the two algorithms and the fast convergence speed of DCSO.
作者 殷哲 曹炬
出处 《计算机科学》 CSCD 北大核心 2012年第1期252-255,267,共5页 Computer Science
关键词 云搜索优化算法 智能优化 函数优化 差商信息 梯度 Clouds search optimization algorithm Intelligent optimization Function optimization Difference quotient information Gradient
  • 相关文献

参考文献18

  • 1LI Yu-ying , WEN Qiao-yan, LI Li-xiang State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.Modified chaotic ant swarm to function optimization[J].The Journal of China Universities of Posts and Telecommunications,2009,16(1):58-63. 被引量:5
  • 2Holland J. Adaptation in Natural and Artificial Systems [M]. Ann Arbor,MI:Univ. of Michigan Press,1975:1-9. 被引量:1
  • 3Goldberg D E. Genetic Algorithms in .Search, Optimization, and Machine Learning [M]. New York: Addison-Wesley, 19 8 9. 被引量:1
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [C] // Proceedings of the IEEE International Conference on Neural Networks. 1995,4.. 1942-1948. 被引量:1
  • 5李太勇,吴江,朱波,方冰.一种基于距离度量的自适应粒子群优化算法[J].计算机科学,2010,37(10):214-216. 被引量:9
  • 6Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) al- gorithm [J]. Journal of Global Optimization, 2007,39 : 459-471. 被引量:1
  • 7Chen Ting-yu, Chi Tzu-ming. On the improvements of the parti-cle swarm optimization algorithm [J]. Advances in Engineering Software, 2010,41 : 229-239. 被引量:1
  • 8Rudolph G. Convergence Analysis of Canonical Genetic Algo- rithms [J]. IEEE Transactions on Neural Networks, 1994, 5 (1)..96-101. 被引量:1
  • 9Zheng Yong-ling, Ma Long-hua, Zhang Li-yan, et al. On The Convergence Anlysis and Parameter Selection in Particle Swarm Optimization [C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi' an, Chi- na, IEEE, 2003:1082-1087. 被引量:1
  • 10Trelea I C. The Particle Swarm Optimization Algorithm; Con- vergenee Analysis and Parameter Selection [J]. Information Processing Letters, 2003,85 : 317-325. 被引量:1

二级参考文献54

共引文献257

同被引文献68

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:893
  • 2陈亮,屠成宇.基于TCAM的大容量文本搜索[J].计算机工程,2005,31(5):210-212. 被引量:2
  • 3章毓晋.过渡区和图象分割[J].电子学报,1996,24(1):12-17. 被引量:54
  • 4中文分词.http://baike.baidu.com/view/19109.htm. 被引量:3
  • 5刘锁兰,杨静宇.过渡区提取方法综述[J].中国工程科学,2007,9(9):89-96. 被引量:5
  • 6Snyder W E, Qi H. Machine Vision [M]. Cambridge: Cambrid- ge University Press, 2004. 被引量:1
  • 7Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Elec- tronic Imaging, 2004,13(1) : 146-165. 被引量:1
  • 8Martin A, Laanaya H, Arnold-Bos A. Evaluation for uncertain image classification and segmentation [J]. Pattern Recognition, 2006,39(11) : 1987-1995. 被引量:1
  • 9Bustince H, Pagola M, Jurio A, et al. A Survey of Applications of the Extensions of Fuzzy Sets to Image Processing [J]. Bio-In- spired Hybrid Intelligent Systems for Image Analysis and Pat- tern Recognition (Studies in Computational Intelligence), 2009, 256:3-32. 被引量:1
  • 10Tizhoosh H R. Image threshnlding using type Ⅱ fuzzy sets [J]. Pattern Recognition, 2005,38 (12) : 2363-2372. 被引量:1

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部