期刊文献+

一种改进的群搜索优化方法 被引量:3

An improved group searching optimization method
下载PDF
导出
摘要 标准的群搜索优化(GSO)方法是一种适用于解决高维函数优化问题的群智能算法,且简单、高效,易于实现。为了进一步提高其收敛速度和精度,对该方法进行了改进。在保留其"发现者—追随者—游荡者"框架的同时,改进的GSO方法将最大下降方向策略引入发现者行为。在每轮迭代中,发现者不但按照自身方向进行搜索,同时也根据最大下降方向进行搜索。分别通过23个基准测试函数对2种优化方法进行测试,结果表明:改进的GSO方法优于标准群搜索方法。 Standard group searching optimization (GSO)is a swarm intelligence algorithm for high-dimensional function optimization. It is simple and efficient, and easy to implement. In order to enhance its convergence speed as well as precision, an improvement on this method is presented. Inheriting the framework of" producer-scroungerranger"of GSO, the improved GSO (iGSO)introduces the strategy of maximum descendent direction to the behavior of the so-called producer. In each iteration, the producer searches not only according to the direction of itself, but also according to the maximum descendent direction. Tests are carried out through 23 standard test functions on GSO and iGSO independently, the results shows iGSO method is prior to GSO.
出处 《传感器与微系统》 CSCD 北大核心 2012年第9期28-31,共4页 Transducer and Microsystem Technologies
基金 清华大学汽车安全与节能国家重点实验室开放基金资助项目(KF11011)
关键词 群搜索优化方法 函数优化 群智能算法 group searching optimization (GSO)method function optimization swarm intelligence algorithm
  • 相关文献

参考文献8

二级参考文献34

  • 1李丽娟,黄志斌,刘锋.启发式粒子群优化算法及其在空间结构优化中的应用[J].空间结构,2008,14(3):47-55. 被引量:8
  • 2Whitley D,Rana S,Dzubera J,et al.Evaluating evolutionary algorithms[J].Artificial Intelligence, 1996,85:245-276. 被引量:1
  • 3Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975:228-234. 被引量:1
  • 4Rechenberg I.Evolutionstrategie: Optimieung technischer systeme nach Prinzipien der biologischen evolution[D].Frommann-Holzboog, Stuttgart, 1973. 被引量:1
  • 5Fogel L J,Owens A J,Walsh M J.Artificial intelligence through simulated evolution[M].New York:John Wiley,1966. 被引量:1
  • 6Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life,Paris,France, 1991 : 134-142. 被引量:1
  • 7Kenndy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, USA, 1995 : 1942-1948. 被引量:1
  • 8He S,Wu Q H.A novel group search optimizer inspired by animal behavioural[C]//2006 IEEE Congress on Evolutionary Computation, 2006:4415-4421. 被引量:1
  • 9Wolpert D H,Macready W G.No free lunch theorems for search[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) : 67-82. 被引量:1
  • 10Birge B.PSOT-a particle swarm optimization for use with matlab[C]// SIS' 03,Proceedings of the 2003 IEEE, Swarm Intelligence Symposium,Aprll 2003:182-186. 被引量:1

共引文献40

同被引文献26

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2冯林,张名举,贺明峰,戚正君,滕弘飞.基于粒子群优化算法的多模态医学图像刚性配准[J].大连理工大学学报,2004,44(5):695-699. 被引量:7
  • 3杨帆,张汗灵.蚁群算法和Powell法结合的多分辨率三维图像配准[J].电子与信息学报,2007,29(3):622-625. 被引量:19
  • 4HE R, NARAYANA P A. Global optimization of mutual information: application to three - dimensional retrospec- tive registration of magnetic resonance images [ J ]. Corn- put Medimag Grap,2002 ,26 :277-292. 被引量:1
  • 5DAMAS S, CORDON O, SANTAMARfA J. Medical im- age registration using evolutionary computation: an ex- perimental survey [ J ]. IEEE Computational Intelligence Magazine ,2011 ( 11 ) :26-42. 被引量:1
  • 6BERNON J L, BOUDOUSQ V, ROHMER J F, et al. A comparative study of Powell' s and Downhill Simplex al- gorithms for a fast multimodal surface matching in brain imaging[J]. Computerized Medical Imaging and Graph- ics ,2001,25:287-297. 被引量:1
  • 7HE S, WU Q H, SAUNDERS J R. Group search optimi- zer: An optimization algorithm inspired by animal searching behavior [ J ]. IEEE T Evolut Comput, 2009, 13(5 ) :973-990. 被引量:1
  • 8QI K, TIAN L, YONG Y, et al. Group search optimizer based optimal location and capacity of distributed gen- erations[ J ]. Neurocomputing,2012 ,78 :55-63. 被引量:1
  • 9Brainweb. Simulated brain database [ DB/OL]. [2012 -08 -20]. http://www, bic. mni. mcgill, ca/brain- web/. 被引量:1
  • 10DAMAS S, CORDON O, SANTAMAR J. Medical image registration using evolutionary computation: An experi- mental survey [ J ]. IEEE Computational Intelligence Magazine,2011,6:26-32. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部