期刊文献+

基于改进容积卡尔曼滤波的纯方位目标跟踪 被引量:29

Pure bearing tracking based on improved cubature Kalman filter
下载PDF
导出
摘要 为处理纯方位跟踪的非线性问题,提出了距离参数化均方根容积卡尔曼滤波,在消除距离信息不可测对跟踪影响的同时弱化了计算机有限字长截断效应所引入的误差。在假设目标的初始距离信息用多个参数化模型表示的基础上,对每个模型独立进行均方根容积卡尔曼滤波,并依据贝叶斯准则计算各滤波结果对应的概率,将概率和对应结果的加权融合作为最终滤波结果。实验仿真表明,该滤波虽略微提升了计算复杂度,但获得了更好的滤波精度和鲁棒性。 To solve the nonlinear problem in pure bearing tracking,a range parametrization root-mean-square cubature Kalman filter is proposed to eliminate the effect of the unobservable range and the error introduced by arithmetic operations performed on the finite word-length computer.On the basis of the initial range expressed by several parameterized models,a root-mean-square cubature Kalman filter is run corresponding to every interval,and the probability is computed according to the Bayesian rule.All the weighting outputs of the filters are summed as the final estimation.Simulation results show the root-mean-square cubature Kalman filter can obtain better accuracy and robustness although the complexity of the algorithm is a little too high.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期28-33,共6页 Systems Engineering and Electronics
基金 军队科研基金(KJ09131)资助课题
关键词 纯方位跟踪 距离参数化 均方根 容积卡尔曼滤波 pure bearing tracking range parametrization root-mean-square cubature Kalman filter
  • 相关文献

参考文献15

  • 1Levine J, Marino R. Constant-speed target tracking via bearing- only measurements[J]. IEEE Trans. on Aerospace and Elec- tronic Systems, 1992,28(1) :175 - 182. 被引量:1
  • 2Multiple Autonomous Robotic Systems Labraratory. Bearing-on- ly tracking using bank of MAP estimators, TR2010- 0001[R]. Minneapolis: Department of Computer Science &Engineering, University of Minnesota,2010. 被引量:1
  • 3Jason Y, Nick C, Randy P. Network centric angle only tracking[C]// Proc. of the Signal and Data Processing of Small Targets ,2009:1 - 11. 被引量:1
  • 4宋骊平,姬红兵.多被动传感器UKF与EKF算法的应用与比较[J].系统工程与电子技术,2009,31(5):1083-1086. 被引量:16
  • 5Aiclala V J. Kalman filter behavior in bearing-only tracking application[J]. IEEE Trans. on Aerospace and Electronic Sys- tems,1979,15(1) :29 - 39. 被引量:1
  • 6Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for the non-linear transformation of means and covariances in linear filters and estimators [J].IEEE Trans. on Automatic Control, 2000,45(3) :477 - 482. 被引量:1
  • 7Challa S, Bar Shalom Y, Krishnamurthy V. Nonlinear filtering via generalized edge worth series and Gauss-Hermite quadrature[J]. IEEE Trans. on Signal Processing ,2000,48(6) :1816 - 1820. 被引量:1
  • 8Ienkaran A, Simon H. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control ,2009,54(6) : 1254 - 1279. 被引量:1
  • 9Peach N. Bearings-only tracking using a set of range-parameter ised extended Kalman filters[J]. IEEE Proceeding of the Con trol Theory Application,1995,142(1) :73 - 80. 被引量:1
  • 10Br'ehard T, Cadre J P. Hierarchical particle filter for bearings- only tracking[J]. IEEE Trans. on Aerospace and Electronic Systems ,2007,43(4) :1567 - 1585. 被引量:1

二级参考文献6

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2Dufour F, Mariton M. Tracking a 3D maneuvering target with passive sensors[J].IEEE Trans. on AES, 1991, 27(4) :725 - 739. 被引量:1
  • 3SONG L P, JI H B. Least squares interacting multiple model algorithm for passive multi-sensor maneuvering target tracking[C]//2nd International Conference on Natural Computation, Xi'an, 2006, 479 - 482. 被引量:1
  • 4Blackman S, Popolir. Design and analysis of modern tracking systems[M]. Norwood: Artech House, 1999. 被引量:1
  • 5Julier S, Uhlmann J. A new extension of the Kalman filter to nonlinear systems[C]//11th Int Symposium Aerospace/Defense Sensing, Simulation and Controls, Orlando, 1997 : 54 - 65. 被引量:1
  • 6Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and eovarianees in filters and esti mators[J]. IEEE Trans. on AC, 2000, 45(3) :477 - 482. 被引量:1

共引文献17

同被引文献260

引证文献29

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部