期刊文献+

容积Rauch-Tung-Striebel平滑器 被引量:1

A Cubature Rauch-Tung-Striebel Smoother
下载PDF
导出
摘要 针对离散非线性系统的状态平滑问题,基于Rauch-Tung-Striebel(RTS)理论设计了一种容积卡尔曼平滑器(Cubature Kalman Smoother,CKS),即容积Rauch-Tung-Striebel平滑器(RTSCKS)。首先,基于经典贝叶斯状态估计理论框架,推导了状态概率密度分布形式的非线性系统最优平滑算法;其次,基于Rauch-Tung-Striebel理论,建立了相应的最优平滑递推算法;然后,将其与容积卡尔曼滤波算法相结合,建立了递推形式的RTS-CKS平滑器;最后,通过典型的纯方位跟踪模型验证了该平滑器的可行性和有效性。该平滑器为非线性系统的状态估计提供了新的估计算法。 In view of the state smoothing problem of nonlinear discrete-time system, a cubature Kalman smoother is derived based on the Rauch-Tung-Striebel theory,namely,the cubature Rauch-Tung-Striebel smoother( RTS-CKS) . Firstly,based on the classical Bayesian state estimation framework,the optimal smoot-hing algorithm of the nonlinear system is derived under the state probability density distribution form. Second-ly,the corresponding optimal smoothing recursion algorithm is established based on the Rauch-Tung-Striebel theory. Then,the recursion type form of RTS-CKS smoother is derived through the combinations of the cuba-ture Kalman filter and the optimal smoothing recursion algorithm above. Finally,the simulation shows the fea-sibility and effectiveness of the proposed smoother through classical bearings only tracking model. The pro-posed smoother provides a novel estimation algorithm for state estimation of nonlinear system.
作者 杨峻巍
出处 《电讯技术》 北大核心 2014年第11期1468-1474,共7页 Telecommunication Engineering
关键词 非线性系统 状态估计 容积卡尔曼滤波 球面-径向容积转换 Rauch-Tung-Striebel平滑器 nonlinear system state estimation cubature Kalman filter spherical-radial cubature transformation rauch-tung-striebel smoother
  • 相关文献

参考文献14

二级参考文献87

  • 1邓自立,李春波.自校正信息融合Kalman平滑器[J].控制理论与应用,2007,24(2):236-242. 被引量:4
  • 2Mkadem F, Boumaiza S. Physically Inspired Neural Network Model for RF Power Amplifier Behavioral Modeling and Digi- tal Predistortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(4): 913-923. 被引量:1
  • 3Jiang H, Wilford P A. Digital Predistortion for Power Ampli- tiers Using Separable Functions [ J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4121- 4130. 被引量:1
  • 4Haykin S. Kalman Filtering and Neural Networks[ M]. New York: Wiley, 2001. 被引量:1
  • 5Julier S, Uhlmann J, Durrant - Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators [ J ]. IEEE Transactions on Automatic Control, 2000,45(3) :477 - 482. 被引量:1
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear es- timation[J]. IEEE Proceedings,2004,92(3) :401 - 422. 被引量:1
  • 7Holmes S A, Klein G, Murray D W. An O(N-2) Square Root Unscented Kalman Filter for Visual Simultaneous Local- ization and Mapping[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009, 31(7):1251 - 1263. 被引量:1
  • 8Ogunfunmi T. Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches [ M ]. New York: Springer, 2007. 被引量:1
  • 9Simandl M, Dunik J. Signla point gaussian sum filter design using square root unscented filters[ C]// Proceedings of the 16th I- FAC World Congress. Oxford:Elsevier,2006:101113- 1005. 被引量:1
  • 10Levine J, Marino R. Constant-speed target tracking via bearing- only measurements[J]. IEEE Trans. on Aerospace and Elec- tronic Systems, 1992,28(1) :175 - 182. 被引量:1

共引文献130

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部