期刊文献+

用于纯方位跟踪的简化粒子滤波算法及其硬件实现 被引量:11

Simplified Algorithm and Hardware Implementation for Particle Filter Applied to Bearings-only Tracking
下载PDF
导出
摘要 针对粒子滤波运算量大,硬件复杂性高的问题,该文提出了一种用于纯方位跟踪的简化粒子滤波算法,该算法引入了一种新的基于阈值的重采样方法,降低了硬件实现的复杂度。在算法研究的基础上,论文研究了基于FGPA的硬件电路实现方法,给出了系统的整体硬件结构及重采样/采样模块的实现方案,讨论了粒子滤波硬件实现的资源优化及时间优化问题。仿真结果表明,对于纯方位跟踪问题,该粒子滤波算法具有优于扩展Kalman滤波器(EKF)的性能;硬件电路实验表明,该滤波器可以实现对被动目标的纯方位跟踪,并具有比通用粒子滤波器较快的处理速度。 A simplified particle filter algorithm, which introduces a compact threshold-based resampling algorithm and features lower computing power and hardware complexity, is proposed for the bearings-only tracking problem. Based on the proposed algorithm, this paper lays emphasis on the efficient hardware implementation of particle filters on FPGA platform, and presents the hardware architecture of the resample/sample unit and the whole system. Simulation results show that the simplified algorithm outperforms the extended Kalman filter. Experimental study indicates that the implemented particle filter can be used to solve the bearings-only tracking problem and has rather fast processing rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第1期96-100,共5页 Journal of Electronics & Information Technology
关键词 纯方位跟踪 粒子滤波 重采样 FPGA Bearings-only tracking Particle filter Resampling FPGA
  • 相关文献

参考文献10

  • 1Song T L and Speyer J L. A stochastic analysis of a modified gain extended Kalman filter with application to estimation with bearings-only measurements. IEEE Trans. on Automatic Control, 1985, AC-30(10): 940-949. 被引量:1
  • 2郭福成,李宗华,孙仲康.无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J].电子与信息学报,2004,26(6):917-922. 被引量:34
  • 3Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, London: Artech House, 2004, Chapter 5-12. 被引量:1
  • 4Doucet A, de Freitas N, and Gordon N (Eds.). Sequential Monte Carlo Methods in Practice. New York: Springer, 2001, Chapter 15-26. 被引量:1
  • 5Doucet A and Wang X D. Monte Carlo methods for signal processing: A review in the statistical signal processing context. IEEE Signal Processing Magazine, 2005, 22(6): 152-170. 被引量:1
  • 6Gordon N, Salmond D, and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, lEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113. 被引量:1
  • 7Zhai Y and Yeary M. A new particle filter tracking algorithm for DOA sensor system. Proc. of Instrumentation and Measurement Technology, Warsaw, 2007: 1-4. 被引量:1
  • 8Bolic M, Athalye A, and Djuric P M, et al. Algorithmic modification of particle filters for hardware implementation. Proc. of the European Signal Processing. Conference, Vienna,Austria, 2004: 1641-1646. 被引量:1
  • 9Bolic M, Djuric P M, and Hong S. Resampling algorithms for particle filters: A computational complexity perspective. EURASIP Journal of Applied Signal Processing: 2004, (15): 2267-2277. 被引量:1
  • 10Athalye A, Bolic M, and Hong S, et al Generic hardware architectures for sampling and resampling in particle filters. EURASIP Journal of Applied Signal Processing, 2005, (17): 2888-2902. 被引量:1

二级参考文献8

  • 1Aidala V.Kalman filter behavior in bearing-only tracking applications.IEEE Trans.on Aerospace and Electronic Systems,1979,AES-15(1):29-39. 被引量:1
  • 2Bar-Shalom Y.Estimation and Tracking,Principles,Techniques,and Software.Boston,London:Artech House,1993:382-410. 被引量:1
  • 3Bell M,Cathey W.The iterated Kalman filter update as a Gauss-Newton method.IEEE Trans.on Automatic Control,1993,AC-38(2):294-297. 被引量:1
  • 4Song T L,Speyer J.A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements.IEEE Trans.on Automatic Control,1985,AC-30(10):940-949. 被引量:1
  • 5Galkowski P,Islam M.An alternative derivation of modified gain function of Song and Speyer.IEEE Trans.on Automatic Control,1991,AC-36(11):1322-1326. 被引量:1
  • 6Guerci J,Goetz R,Dimodica J.A method for improving extended Kalman filter performance for angle-only passive ranging.IEEE Trans.on Aerospace and Electronic Systems,1994,AES-30(4):1090-1093. 被引量:1
  • 7Fagin S.Comments on a method for improving extended Kalman filter performance for angle-only passive ranging.IEEE Trans.on Aerospace and Electronic Systems,1995,AES-31(3):1148-1150. 被引量:1
  • 8Becher K.Simple linear theory approach to TMA observability.IEEE Trans.on Aerospace and Electronic Systems,1993,AES-29(2):575-578. 被引量:1

共引文献33

同被引文献81

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部