摘要
针对粒子滤波运算量大,硬件复杂性高的问题,该文提出了一种用于纯方位跟踪的简化粒子滤波算法,该算法引入了一种新的基于阈值的重采样方法,降低了硬件实现的复杂度。在算法研究的基础上,论文研究了基于FGPA的硬件电路实现方法,给出了系统的整体硬件结构及重采样/采样模块的实现方案,讨论了粒子滤波硬件实现的资源优化及时间优化问题。仿真结果表明,对于纯方位跟踪问题,该粒子滤波算法具有优于扩展Kalman滤波器(EKF)的性能;硬件电路实验表明,该滤波器可以实现对被动目标的纯方位跟踪,并具有比通用粒子滤波器较快的处理速度。
A simplified particle filter algorithm, which introduces a compact threshold-based resampling algorithm and features lower computing power and hardware complexity, is proposed for the bearings-only tracking problem. Based on the proposed algorithm, this paper lays emphasis on the efficient hardware implementation of particle filters on FPGA platform, and presents the hardware architecture of the resample/sample unit and the whole system. Simulation results show that the simplified algorithm outperforms the extended Kalman filter. Experimental study indicates that the implemented particle filter can be used to solve the bearings-only tracking problem and has rather fast processing rate.
出处
《电子与信息学报》
EI
CSCD
北大核心
2009年第1期96-100,共5页
Journal of Electronics & Information Technology