摘要
针对电力系统短期负荷预测的特点,以及人工神经网络的自学习和复杂的非线性拟合能力,提出了基于径向基(RBF)神经网络的短期电力负荷预测模型.采用免疫粒子群优化算法来训练网络的隐层节点、径向基函数的中心点和网络权值.综合考虑气象、天气等影响负荷因素进行短期负荷预测.仿真试验表明,该方法同传统RBF神经网络相比,具有较高的预测精度,同时具有较强的实用性.
出处
《科技信息》
2011年第33期I0299-I0299,I0325,共2页
Science & Technology Information