期刊文献+

基于免疫粒子群算法的多用户检测技术研究 被引量:2

Study on Multiuser Detection Technology Based on Immune Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 将免疫系统的免疫机制引入到粒子群优化算法的设计中,模拟免疫系统、群集智能和神经网络的信息处理机制,提出了免疫粒子群优化算法。这种免疫粒子群算法结合了粒子群的近似全局优化能力和由Hopfield神经网络构成的免疫系统的快速信息处理机制,加快了算法的收敛速度,并提高了粒子群算法的全局收敛能力。然后利用此算法对CDMA系统的多用户检测性能改进问题进行实验研究,证明了本文的方法有较快的收敛速度,并且无论是抗多址干扰能力还是抗远近效应能力都优于传统方法和一些应用优化算法的多用户检测器。 In this paper,idea on immune information processing mechanism of immune system is introduced to a particle swarm optimization algorithm.By simulating the information processing mechanism of biological immune system and particle swarm intelligence,we present an hnmune Particle Swarm Optimization algorithm (IPSO).The proposed algorithm is a hybridization of the PSO that has better performance and an immune operator that reduces the computational complexity by providing faster convergence with Hopfield neural network.Experiments that have been carried out on the algorithm can improve the performance of muhiuser detection in CDMA systems.Simulation results show that IPSO detector not only can achieve the global optimization in fast convergenee rate,but also is obviously superior to the conventional receiver and the muhiuser detectors based on previous optimum algorithms in terms of the muhiple-aecess interfere and near-far resistance.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第35期148-151,共4页 Computer Engineering and Applications
基金 哈尔滨市科学研究基金(2005AFXXJ033)。
关键词 粒子群优化算法 免疫系统 HOPFIELD神经网络 多用户检测 Particle Wwarm Optimization algorithm immune system Hopfield neural network muhiuser detection
  • 相关文献

参考文献9

  • 1张贤达,保铮著..通信信号处理[M].北京:国防工业出版社,2000:609.
  • 2VERSU S.Minimum probability of error for asynchronous Gaussian multiple-access channels[J].IEEE Trans on Info Theory,1986,32(1):85-96. 被引量:1
  • 3ERGUN C,HGCIOGLU K.Multiuser detection using a genetic algorithm in CDMA communications systems[J].IEEE Trans on Commun,2000,48 (8):1374-1383. 被引量:1
  • 4ABEDI S,TAFAZOLLI R.Genetically modified multiuser detection for code division multiple access systems[J].IEEE JSAC,2002,20(2):463-473. 被引量:1
  • 5LIM H S.Multiuser detection for DS-CDMA systems using evolutionary programming[J].IEEE Communications Letters,2003,7 (3):101-103. 被引量:1
  • 6KENNEDY J,EBERHART R C.A discrete binary version of the particle swarm optimization algorithm[C]//proceedings of the World Multiconference on Systemcs,Cybemetics and Informatics.Piscataway,NJ:IEEE Service Center,1997:4104-4109. 被引量:1
  • 7赵莹,郑君里.采用粒子集群算法的DS-CDMA多用户检测[J].清华大学学报(自然科学版),2004,44(6):840-842. 被引量:10
  • 8王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351
  • 9HOPFIELD J J.Neurons with graded response have collective computational properties like those of two state neurons[C]//proceedings of National Academic Science,USA,1984:3088-3092. 被引量:1

二级参考文献6

  • 1Verdu S.Multiuser Detection [M].Cambridge,UK:Cambridge University Press,1998. 被引量:1
  • 2Mitra U,Poor H V.Neural network techniques for adaptive multiuser demodulation [J].IEEE JSAC,1994,12(9):1460-1470. 被引量:1
  • 3Ergun C,Hacioglu K.Multiuser detection using a genetic algorithm in CDMA communications systems [J].IEEE Trans Commun,2000,48(8):1374-1383. 被引量:1
  • 4Abedi S,Tafazolli R.Genetically modified multiuser detection for code division multiple access systems [J].IEEE JSAC,2002,20(2):463-473. 被引量:1
  • 5Kennedy J,Eberhart R C.Swarm Intelligence [M].San Francisco:Morgan Kaufmann,2001. 被引量:1
  • 6张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78

共引文献357

同被引文献22

  • 1赵莹,郑君里.采用粒子集群算法的DS-CDMA多用户检测[J].清华大学学报(自然科学版),2004,44(6):840-842. 被引量:10
  • 2王永刚,焦李成.基于随机Hopfield神经网络的最优多用户检测器[J].电子学报,2004,32(10):1630-1634. 被引量:11
  • 3郑冬生,李飞.量子遗传算法及其在多用户检测中的应用[J].计算机工程与应用,2006,42(23):229-232. 被引量:2
  • 4Verdu S.Minimum probability of error for asynchronous Gaussian muhiple-access channels[J].IEEE Trans Inform Theory, 1986,32( 1 ) : 85-96. 被引量:1
  • 5Ergun C,Haciogiu K.Multi-user detection using a genetic algorithm in CDMA communications systems[J].IEEE Trans Commun,2000, 48(8) : 1374-1383. 被引量:1
  • 6Eusuff M M,Lansey K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Water Resources Planning and Management,2003,129(3):210-225. 被引量:1
  • 7Shie Y H,Atiquzzaman M.Optimal design of water distribution network using shuffled complex evolution[J].The Institution of Engineers, 2004,44( 1 ) :93-107. 被引量:1
  • 8Elbehagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics, 2005,19( 1 ) :43-53. 被引量:1
  • 9Elbehairy H,Elbeltagi E,Hegazy T,et al.Comparison of two evolutionary algorithms for optimization of bridge deck repairs[J].Computer- Aided Civil and Infrastructure Engineering,2006,21:561-572. 被引量:1
  • 10de Castro L N,von Zuben F J.The clonal selection algorithm with engineering applications[C]//Proceedings of Workshop on Artificial Immune Systems and Their Applications.Las Vegas,USA: [s.n.], 2000 : 36-37. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部