期刊文献+

基于免疫粒子群的P2P协议识别方法 被引量:2

Method of P2P traffic identification based on Immune-PSO
下载PDF
导出
摘要 为了解决基于统计特征的P2P协议识别中,因特征选择不当而引起的识别准确率低的问题,采用免疫粒子群算法(Immune-PSO)选取最优特征子集,选择出最能区分P2P协议的特征子集。实验结果表明,该算法较标准粒子群算法具有更高的全局搜索能力,能更准确地找出最优特征子集,该方法能有效地提高协议的识别率,对常见的P2P协议如BitTorrent、eMule等有高达90%的识别率。 To solve the problem that the low rate of recognition accuracy about P2P traffic identification which caused by feature selection, an Immune-PSO hased method is proposed to select subset features. The Immune-PSO has hetter capahility of glohal search than standard PSO, so it can accurately identify the appropriate set of features better. Experimental results show that this method can effectively improve the recognition rate of common P2P protocols such as BitTorrent, eMule, etc with a precision about 90%.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第10期3301-3304,共4页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目(2007CB311106)
关键词 免疫粒子群 点到点 协议识别 特征统计 lmmune-PSO P2P protocol identification statistical features
  • 相关文献

参考文献15

  • 1Azzouna N B,Gu Illemin F.lmpact of peer-to-peer applications on wide area network traffic:an experimental app roach [C].Proc of IEEE Globe Telecommunications Conference, 2004: 1544- 1548. 被引量:1
  • 2Madhukar A,Williamson C.A longitudinal study of P2P traffic classification[C].Proceedings of 14th IEEE International Sym- posium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Monterey, CA, USA: IEEE Com- puter Society,2006:179-188. 被引量:1
  • 3吴鹏冲.非默认端口网络协议识别系统的研究与实现[D].北京:北京邮电大学,2009:11-27. 被引量:1
  • 4雷蕾..关于P2P流媒体流量识别的研究与实现[D].华东师范大学,2007:
  • 5CHEN Zhenxiang, WANG Haiyang, PENG Lizhi, et al.A novel method of P2P hosts detection based on flexible neural tree[C]. Jinan:Proceedings of the Sixth International Conference on In- telligent System's Design and Applications,2006:556-561. 被引量:1
  • 6Ohzahata S,Hagiwara Y, Terada M,et al.A traffic identification method and evaluations for a pure P2P application[C].Boston, MA,USA:Proceedings of Passive and Active Measurement.Ber- lin,Germany:Springer-Verlag,2005:55-68. 被引量:1
  • 7谭炜,吴健.基于半监督学习的P2P协议识别[J].计算机工程与设计,2009,30(2):291-293. 被引量:4
  • 8Crotti M,Dusi M,Gringoli F,et al.Traffic classification through simple statistical Fingerprinting [C]. ACM SIGCOMM Com- puter Communication Review.New York:ACM Press,2007:5-16. 被引量:1
  • 9蒋海明,张剑英,王青青,彭娟.P2P流量检测与分析[J].计算机技术与发展,2008,18(7):74-76. 被引量:25
  • 10Junior G P S,Maia J E B,Holanda R,et al.P2P traffic identifica- tion using cluster analysis[C].First International on Global Infor- mation Infrastructure Symposium,2007:128-133. 被引量:1

二级参考文献27

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Yang Y, Liu X.Are-exam ination of text categorization methods[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (S IGIR'99), 1999:42-49. 被引量:1
  • 4Tan Songbo.Neighbor weighted K-nearest neighbor for unbalanced text corpus [J].Expert Systems with Applications, 2005,28 (4) : 667- 671. 被引量:1
  • 5Hwang W J,Wen K W.Fast KNN classification algorithm based on partial distance seareh[J].Electron Lett, 1998,34(21 ) : 2062-2063. 被引量:1
  • 6Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks.Perth,Australia: IEEE Service Center,Piscataway,NJ, 1995 : 1942-1948. 被引量:1
  • 7Erman J,Arlitt M,Mahanti A.Traffic classification using clustering algorithms[C].Pisa, Italy:SIGCOMM MineNet Workshop, 2006. 被引量:1
  • 8Basu S, Bilenko M, Mooney R. A probabilistic framework for semi-supervised clustering [C]. Seattle, USA: Proc KDD, 2004: 59-68. 被引量:1
  • 9Bemaille L, Teixeira R, Salamatian K.Early application identi cation[C]. Lisboa,Portugal:CoNEXT,2006. 被引量:1
  • 10Cache Logic.Peer-to-peer in 2005[EB/OL].http://www. cachelogic.com/home/pages/research/p2p2005.php,2005. 被引量:1

共引文献529

同被引文献6

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部