摘要
根据转子动力学理论建立了对称柔性转子-轴承系统的力学模型及非线性动力学方程;运用Wilson-θ法,并结合预估-校正机理和Newton-Raphson法,提出了一种有效的求解动力学系统不平衡响应的方法。以柔性转子转轴的刚度为控制参数,运用该方法求解了转子系统的不平衡周期响应,并结合Floquet分岔理论和Poincaré映射,分析了系统周期运动的稳定性及其分岔行为。数值结果揭示了系统具有周期运动、三周期运动、准周期运动、五周期运动、跳跃等复杂丰富的非线性动力学现象。
Dynamics model and equation of a nonlinear flexible rotor-bearing system were established based on rotor dynamics.A method consisting of Wilson-θ method and the predictor-corrector mechanism and Newton-Raphson method was proposed to determine unbalanced response of dynamics system.Taking the stiffness of flexible rotor as the control parameter,nonlinear dynamic responses of rotor system were obtained by the proposed method.The stability and bifurcation of the periodic motion of system can be analyzed by the Floquet bifurcation theory and Poincaré map.Numerical results reveal periodic,3-periodic,quasi-periodic,5-periodic,jump solution of the system.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2011年第24期2918-2922,2965,共6页
China Mechanical Engineering