摘要
运用非线性动力学现代理论对一非线性转子—轴承动力系统进行研究。基于Wilson-θ法并将其改进形成一种求解周期响应的局部迭代方法。针对转子系统具有的局部非线性特征,运用该方法使得非线性响应的迭代求解仅在非线性自由度上进行。运用Floquet稳定性分岔理论,结合Poincar啨映射研究系统周期响应的稳定性和分岔形式?结果展现系统具有周期、拟周期、多解共存、跳跃等丰富复杂的非线性现象。
A dynamical model of nonlinear flexible rotor-hydrodynamic bearing system is analyzed by theory of modern nonlinear dynamics. A local iteration method consisting of Wilson-θ and Newton-Raphson method is proposed to calculate nonlinear dynamic responses. In accordance with the local nonlinearity of the system, nonlinear dynamic responses can be obtained through iterations on the nonlinear degree-of-freedom only. The problems of stability and bifurcation of periodic motions are studied by Floquet theory together with Poincare map. The numerical results reveal rich and complex nonlinear behaviors of the system, such as bifurcation of periodic, quasiperiodic responses, jumping and co-existing of different responses and so on.
出处
《机械强度》
EI
CAS
CSCD
北大核心
2007年第3期370-375,共6页
Journal of Mechanical Strength
基金
西安理工大学科技创新与特色研究计划(210514)资助项目
关键词
非线性
转子-轴承系统
分岔
稳定性
Nonlinear
Rotor-bearing system
Bifurcation
Stability