期刊文献+

图像的小波系数神经网络预测编码 被引量:3

IMAGE CODING BASED ON WAVELET COEFFICIENT PREDICTION USING NEURAL NETWORKS
下载PDF
导出
摘要 提出一种图像的小波系数预测编码方法二在该方法中,原始图像被分解为一个小尺寸的低频图像和一系列不同方向的多分辨率细节子带图像(小波系数图像),由于不同分辨率的小波系数图像具有相似性,故可用低分辨率小波系数来预测同一方向相邻较高分辨率的小波系数.采用B—P神经网络作为非线性预测器有效地实现了这种预测,结果表明,利用这种编码算法可获得高图像压缩比. ?An image-coding scheme based on wavelet coefficient prediction is propoed.The image is decomposed into a low frequency subimage with small she and a set ofmultiresolution detail subimages (i. e. wavelet coefficients) along different orientations (horizontal,vertical and diagonal). There exists similarity among the detail subhages, therefore, the waveletcoeffidents in the higher resolution subimage can be predicted from those in the lower resolu-tion subimage along the same orientation. As the nonlinear predictors, the B-P neural networks are ed for the ptalictfon. Some examples show that the coding scheme leads to ahigh companion ratio for 512 x 512 still images.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第4期464-468,共5页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金!6977309
关键词 小波系数预测 图像处理 神经网络 图像编码 wavelet coefficient prediction multiresolution analysis, B-P nearal network nonlinear predictor, image coding
  • 相关文献

参考文献3

二级参考文献1

共引文献18

同被引文献49

  • 1SUN Y. Hopfield neural network based algorithms for image restoration and reconstruction Ⅱ algorithms and simulations[ J ]. IEEE Transactions on Signal Processing,2000,48(7) :2105 -2118. 被引量:1
  • 2ANDRZE J C,WLODZIMIERZ K,WLADYSLAW S. Adaptive learning al- gorithm for principal component analysis with partial data[ J ]. Cybernetics and Systems,1996 ,2 :1014 - 1019. 被引量:1
  • 3DONY R, HAYKIN S. Neural network approaches to image compression [J]. Proc IEEE ,1995 ,83 :288 -303. 被引量:1
  • 4Lee C C, Degyves J P. Color image processing in a cellular neu-rid-network environment [ J ]. IEEE Transactions on Neural Networks, 1996,7(5) :1086 - 1098. 被引量:1
  • 5Clarke L P, Qian W. Fuzzy-logic adaptive neural networks for nuclear medicine image restoration [A]. The 20th Annual International Conference on Engineering in Medicine and Biology Society[C]. 1998,vol. 3. 1363 - 1366. 被引量:1
  • 6Qian W, Clarke L P. Wavelet-based neural network with fuzzylogic adaptivity for nuclear image restoration [J]. Proceedings of the IEEE, 1996,84(10) :1458 - 1473. 被引量:1
  • 7Cheung H N, Bouzerdoum A, Newland W. Properties of shunting inhibitory cellular neural networks for colour image enhancement[ A]. The 6th International Conference on Neural Information Processing [ C]. 1999 ,vol. 3. 1219 - 1223. 被引量:1
  • 8Kondo K, Iguch M, Ishigaki H, et al. Design of complex-valued CNN filters for medical image enhancement [ A ]. IFSA World Congress and 20th NAFIPS International Conference [C]. 2001,vol. 3.1642 - 1646. 被引量:1
  • 9Ahmed F, Gustafson S C, Karim M A. High-fidelity image interpolation using radial basia function neural networks [ A ]. Aerospace and Electronics Conference [ C ]. 1995,vol. 2. 588 -592. 被引量:1
  • 10Sun Y. Hopfield neural network based algorithms for image restoration and reconstruction I algorithms and simulations [ J ].IEEE Transactions on Signal Processing, 2000,48 ( 7 ) : 2105-2118. 被引量:1

引证文献3

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部