摘要
研究Jordan李代数的次理想.结果表明:Jordan李代数的完全次理想是理想,可解次理想一定包含可解根基;幂零的Jordan李代数的任何子代数都是次理想,并得到了次理想变为理想的一些必要条件.
The main purpose of the present paper is to give some properties for subideals of Jordan Lie algebras. Every perfect subideal of Jordan Lie algebras is its ideal and solvable subideals are contained in its solvable radical. Moreover, every subalgebra of nilpotent Jordan Lie algebras is its subideal and some necessary conditions under which subideals become ideals for Jordan Lie algebras have been obtained
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第6期1014-1018,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10626011)