期刊文献+

Jordan李代数的次理想 被引量:5

Subideals of Jordan Lie Algebras
下载PDF
导出
摘要 研究Jordan李代数的次理想.结果表明:Jordan李代数的完全次理想是理想,可解次理想一定包含可解根基;幂零的Jordan李代数的任何子代数都是次理想,并得到了次理想变为理想的一些必要条件. The main purpose of the present paper is to give some properties for subideals of Jordan Lie algebras. Every perfect subideal of Jordan Lie algebras is its ideal and solvable subideals are contained in its solvable radical. Moreover, every subalgebra of nilpotent Jordan Lie algebras is its subideal and some necessary conditions under which subideals become ideals for Jordan Lie algebras have been obtained
作者 温启军
机构地区 长春大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期1014-1018,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10626011)
关键词 Jordan李代数 Engel定理 次理想 理想 Jordan Lie algebras Engel' s theorem subideals ideals
  • 相关文献

参考文献12

  • 1Susumu Okubo, Kamiya N. Jordan-Lie Super Algebra and Jordan-Lie Triple System [ J ]. Journal of Algebra, 1997, 198(2) : 388-411. 被引量:1
  • 2Grishkov A N, Shestakov I P. Speciality of Lie-Jordan Algebra [J]. Journal of Algebra, 2001, 237(2): 621-636. 被引量:1
  • 3温启军,钱玲,陈良云.Jordan李代数的分解与Frattini理论[J].东北师大学报(自然科学版),2010,42(4):12-16. 被引量:5
  • 4孟道骥编著..复半单李代数引论[M].北京:北京大学出版社,1998:327.
  • 5Strade H, Frasteiner R. Modular Lie Algebras and Their Representations [ M ]. New York : Marcel Dekker Inc, 1988 : 300. 被引量:1
  • 6刘绍学.交错代数与 Jordan 代数的次理想.数学进展,1964,7(1):72-77. 被引量:3
  • 7Osamu Marou. Subideals of the Join of Lie Algebras [ J]. Hiroshima Math J, 1990, 20(1) : 57-62. 被引量:1
  • 8Schenkman E V. A Theory of Subinvariant of Lie Algebras [J]. Amer J Math, 1951, 73(2) : 453-474. 被引量:1
  • 9Stewart I N. The Minimal Condition for Subideals of Lie Algebras [J]. Math Z, 1969, 111 (4) : 301-310. 被引量:1
  • 10Stewart I N. The Minimal Condition for Subideals of Lie Algebras Implies That Every Ascendant Subalgebra Is a Subideal [J]. niroshima Math J, 1979, 9(1): 35-36. 被引量:1

二级参考文献26

  • 1SUSUMU OKUBO.Jordan-Lie super algebra and jordan-Lie triple system[J].Journal of Algebra,1997,198:388-411. 被引量:1
  • 2GRISHKOV A N.Speciality of Lie-Jordan algebra[J].Journal of Algebra,2001,237:621-636. 被引量:1
  • 3STRADE H,FARSTEINER R.Modular Lie algebras and their representations[M].New York:Marcel Dekker Inc,1988:300. 被引量:1
  • 4Lister, W.G., A structure theory of Lie triple systems, Trans. Amer. Math. Soc, 1952, 72: 217-242. 被引量:1
  • 5Hopkins, Mora C., Nilpotent ideals in Lie and Anti-Lie triple system, Journal of Algebra, 1995, 178: 480- 492. 被引量:1
  • 6史会峰.三维李三系及其导子代数,1999年硕士论文. 被引量:1
  • 7Jacobson, N., General representation theory of Jordan Algebras, Trans. Amer. Math. Soc., 1950, 70: 509- 530. 被引量:1
  • 8Humphiccys, J.E., Introduction to Lie Algebra and Representation Theory, Berlin Heidelberg. New York, 1972. 被引量:1
  • 9K-Meyberg, Lecture on Algebra and Triple System, University of Virginia, 1972. 被引量:1
  • 10Jacobon, N., Lie and Jordan triple system, Amer. J. Math., 1948, 71: 147-170. 被引量:1

共引文献6

同被引文献26

  • 1Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations [M]. New York: Marcel Dekker, Inc, 1988. 被引量:1
  • 2Farnsteiner 1:. Note on Frobenius Extensions and Restricted Lie Superalgebras [J]. J Pure Appl Algebra, 1996, 108(3) : 241-256. 被引量:1
  • 3Bahturin Y A, Mikhalev A A, Petrogradski V M, et al. InfinitmDimensional Lie Superalgebras[M] Berlin: Walter de Gruyter : Co, 1992. 被引量:1
  • 4Hodge T L. Lie Triple System, Restricted Lie Triple System and Algebraic Groups [J]. J Algebra, 2001, 244(2) : 533-580. 被引量:1
  • 5Dokas I, Loday J L. On Restricted Leibniz Algebras [J]. Comm Algebra, 2006, 34(12) : 4467 -4478. 被引量:1
  • 6Strade H. The Classification of the Simple Modular Lie Algebras. Ⅲ. Solution of the Classical Case [J]. Ann Math, 1991, 133(3)= 577-604. 被引量:1
  • 7KorghunovM K. Associative and Leibniz Algebras of Distributions [J]. Izv Vyssh Uchebn Zaved Mat, 1979(5): 74 77. 被引量:1
  • 8Dzhumadil'daev A S, Abdykassymova S A. Leibniz Algebras in Characteristic p [J]. C R Acad Sci Paris S:rie I Math, 2001, 332(12): 1047-1052. 被引量:1
  • 9Patsourakos A. On Nilpotent Properties of Leibniz Algebras[J]. Comm Algebra, 2007, 35(12): 3828-3834. 被引量:1
  • 10Barnes D W. Some Theorems on Leibniz Algebras [J]. Comm Algebra, 2011, 39(7) : 2463-2472. 被引量:1

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部