期刊文献+

Leibniz代数的通用包络代数 被引量:3

Universal Enveloping Algebras of Leibniz Algebras
下载PDF
导出
摘要 把李代数通用包络代数的性质推广到Leibniz代数,给出了Leibniz代数L的通用包络代数U(L)的定义,并利用该定义得到了U(L)的生成元集,确定了U(L)的唯一性定理和U(L)-模结构定理,证明了通用包络代数U(L)的存在性. The authors generalized some properties of the universal enveloping algebras for Lie algebras to Leibniz algebras,and gave the definition of universal enveloping algebras U(L) of Leibniz algebras L,by means of the definition of universal enveloping algebras,obtained a set of generators for U(L),and determined U(L)’s uniqueness theorem and U(L)-module’s structure theorem.Moreover,the existence of universal enveloping algebras U(L) was proved.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期195-198,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171055) 吉林省自然科学基金(批准号:201115006) 中央高校基本科研业务费专项基金(批准号:11SSXT146) 齐齐哈尔大学青年教师科学技术类科研启动支持计划项目(批准号:2011k-Z05)
关键词 LEIBNIZ代数 通用包络代数 生成元集 Leibniz algebras universal enveloping algebras set of generators
  • 相关文献

参考文献2

二级参考文献12

  • 1Susumu Okubo, Kamiya N. Jordan-Lie Super Algebra and Jordan-Lie Triple System [ J ]. Journal of Algebra, 1997, 198(2) : 388-411. 被引量:1
  • 2Grishkov A N, Shestakov I P. Speciality of Lie-Jordan Algebra [J]. Journal of Algebra, 2001, 237(2): 621-636. 被引量:1
  • 3Strade H, Frasteiner R. Modular Lie Algebras and Their Representations [ M ]. New York : Marcel Dekker Inc, 1988 : 300. 被引量:1
  • 4Osamu Marou. Subideals of the Join of Lie Algebras [ J]. Hiroshima Math J, 1990, 20(1) : 57-62. 被引量:1
  • 5Schenkman E V. A Theory of Subinvariant of Lie Algebras [J]. Amer J Math, 1951, 73(2) : 453-474. 被引量:1
  • 6Stewart I N. The Minimal Condition for Subideals of Lie Algebras [J]. Math Z, 1969, 111 (4) : 301-310. 被引量:1
  • 7Stewart I N. The Minimal Condition for Subideals of Lie Algebras Implies That Every Ascendant Subalgebra Is a Subideal [J]. niroshima Math J, 1979, 9(1): 35-36. 被引量:1
  • 8Sieiliano S, Usefi H. Subideals of Lie Superalgebras [ J ]. Journal of Algebra, 2011, 332( 1): 469-479. 被引量:1
  • 9刘绍学.交错代数与 Jordan 代数的次理想.数学进展,1964,7(1):72-77. 被引量:3
  • 10张润萱,张永正.低维李超代数的确定[J].东北师大学报(自然科学版),2008,40(1):1-5. 被引量:14

共引文献10

同被引文献19

  • 1Liang Yun CHEN,Dao Ji MENG,Yong Zheng ZHANG.The Frattini Subalgebra of Restricted Lie Superalgebras[J].Acta Mathematica Sinica,English Series,2006,22(5):1343-1356. 被引量:18
  • 2Rui Pu BAI,Liang Yun CHEN,Dao Ji MENG.The Frattini Subalgebra of n-Lie Algebras[J].Acta Mathematica Sinica,English Series,2007,23(5):847-856. 被引量:10
  • 3Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations [M]. New York: Marcel Dekker, Inc, 1988. 被引量:1
  • 4Farnsteiner 1:. Note on Frobenius Extensions and Restricted Lie Superalgebras [J]. J Pure Appl Algebra, 1996, 108(3) : 241-256. 被引量:1
  • 5Bahturin Y A, Mikhalev A A, Petrogradski V M, et al. InfinitmDimensional Lie Superalgebras[M] Berlin: Walter de Gruyter : Co, 1992. 被引量:1
  • 6Hodge T L. Lie Triple System, Restricted Lie Triple System and Algebraic Groups [J]. J Algebra, 2001, 244(2) : 533-580. 被引量:1
  • 7Dokas I, Loday J L. On Restricted Leibniz Algebras [J]. Comm Algebra, 2006, 34(12) : 4467 -4478. 被引量:1
  • 8Strade H. The Classification of the Simple Modular Lie Algebras. Ⅲ. Solution of the Classical Case [J]. Ann Math, 1991, 133(3)= 577-604. 被引量:1
  • 9KorghunovM K. Associative and Leibniz Algebras of Distributions [J]. Izv Vyssh Uchebn Zaved Mat, 1979(5): 74 77. 被引量:1
  • 10Dzhumadil'daev A S, Abdykassymova S A. Leibniz Algebras in Characteristic p [J]. C R Acad Sci Paris S:rie I Math, 2001, 332(12): 1047-1052. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部