摘要
设H是有限群G的一个子群。称H在G中s-置换嵌入的,如果对于|H|的每个素因子p,H的Sylow p-子群也是G的某个s-置换子群的Sylow p-子群;称H在G中弱s-置换的,如果存在G的一个次正规子群T使得G=HT且H∩T≤HsG,其中HsG是由包含在H中的G的所有s-置换子群生成的群。利用s-置换嵌入和弱s-置换子群研究有限群的结构,推广了前人的一些结果。
Suppose G is a finite group and H is a subgroup of G. H is said to be s-permutably embedded in G if for each prime p dividing I HI, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-permutable sub-group of G ;H is said to be weakly s-permutably in G if there are a subnormal subgroup T of G such that G = HT and HA T≤HsG ,where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We investigate the influence of s-permutably embedded and weakly s-permutably subgroups on the structure of finite groups. Some recent results are generalized.
出处
《贵州大学学报(自然科学版)》
2011年第5期6-9,共4页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目(11071229)