期刊文献+

SOLO分类评价法及其应用研究 被引量:10

SOLO Scoring Method and Studies of Relative Applications
下载PDF
导出
摘要 SOLO分类评价理论将观察到的学习结果分成五个水平:前结构水平、单一结构水平、多元结构水平、拓展抽象水平、关联水平。如果将上述五个层次赋予不同的等级分数,那么学生对问题回答的质量就可以被量化,量化的分数作为终结性评价的依据,这样SOLO分类评价法就可以用来解决学生思维水平层次的问题。探究用SOLO分类评价法进行试题编制的一般方法,设计相关数学知识的测试题,并将其在实践中加以检验和分析。结合分析结果得出SOLO分类评价理论的特点及其存在的问题。 SOLO scoring method consists of five levels of understanding: Pre—structural,uni—structural,multi—structural,extended abstract and relational.If those five levels are given corresponding scores,then the quality of students' answers can be quantified,and the quantified scores can be regarded as the basis of students' final score,thus,SOLO scoring method resolves students' thinking problems of different levels.This essay aims to discuss the general methods of working out test questions and the design of relative math test questions,using SOLO scoring method;analyze,test the SOLO scoring method in practice and work out its peculiarities and existing disadvantage according to the analysis.
作者 刘艳
出处 《宜春学院学报》 2008年第S1期158-160,166,共4页 Journal of Yichun University
关键词 SOLO分类评价法 教学评价 数学试题编制 SOLO scoring method assessment of learning quality workout of math test questions
  • 相关文献

参考文献4

二级参考文献9

  • 1[1]Piaget, Inhelder. The origin of the idea of chance in children[M]. New York: Norton, 1975. 230. 被引量:1
  • 2[2]Grouws D A. Handbook of research on mathematics teaching and learning[M]. New York: Macmillan, 1992. 465-494. 被引量:1
  • 3[3]Li J. Chinese students' understanding of probability[D]. National Institute of Education, Nanyang Technological University Singapore, 2000. 1-49. 被引量:1
  • 4[4]Fischbein E. The intuitive sources of probabilistic thinking in children[M]. Dordrecht: Reidel, 1975. 123. 被引量:1
  • 5[5]Biggs J B, Collis K F. Evaluating the quality of learning: The SOLO taxonomy[M]. New York: Academic Press, 1982. 24-25. 被引量:1
  • 6.普通高中历史课程标准[R].北京:人民教育出版社,2003.. 被引量:1
  • 7Biggs J.Teaching for Quality Learning at University[A].Society for Research in Higher Education[M].Open University Press,1999. 被引量:1
  • 8Hattie J A C,Brown G T L.Cognitive processes in asTTle:The SOLO taxonomy[C].asTTle Technical Report #43,University of Auckland/Ministry of Education,2004,9. 被引量:1
  • 9龚雷,戴再平.进入考试的数学开放题[J].数学教学,2004(1). 被引量:1

共引文献102

同被引文献35

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部