期刊文献+

喷墨印花纹理图像的单元分解光流场配准算法 被引量:1

Image registration algorithm for ink-jet printing texture image based on unit partitioning of optical flow field
下载PDF
导出
摘要 为了解决喷墨印花纹理图像在噪声环境下配准精确度低,以及局部区域存在大的配准偏差的问题,提出一种新的基于单元分解光流场的图像配准算法.利用单元分解技术对光流场图像配准问题进行建模,采用阶谱分层策略和基函数自适应调整,对单元分解过程中生成的局部和全局网格实施灵活度控制.通过引入一个新的能够对纹理结构的光滑效果实施约束的特征能量项,可以使网格单元取得令人满意的纹理表征效果,并且能够提高光流场模型在定位精细纹理边缘时的配准精度.对含噪喷墨印花纹理图像的配准实验结果表明了本文算法的可行性. A novel image registration algorithm based on the unit partitioning of optical flow field was proposed in order to solve the problems of the low accuracy in digital registration of ink-jet printing images under noisy environment and the large registration deviation for local areas. The technology of unit partitioning was applied to modeling the problem of optical field image registration. Hierarchical strategy and adaptive adjustment of basic function were proposed to implement the flexibility control on the local and global meshes generated by the processing of unit partitioning. A novel feature energy term restricting the effective of smoothing on texture structure was introduced in order to obtain satisfied efficiency of texture characteristic for mesh elements and improve the registration accuracy of optical flow model for positioning fine texture edges. Experiments on noisy ink-jet printing texture images were presented to illustrate the feasibility of the algorithm.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第10期1720-1725,1731,共7页 Journal of Zhejiang University:Engineering Science
基金 国家重大科技专项资助项目(2009ZX01043-003-003 2011ZX01039-001-002) 国家自然科学基金资助项目(60703042 61070113) 浙江省科技厅公益性计划资助项目(2010C31027)
关键词 喷墨印花纹理 光流场 单元分解 图像配准 ink-jet printing texture optical flow field unit partitioning image registration
  • 相关文献

参考文献12

  • 1GHOLIPOUR A, KEHTARNAVAZ N, YOUSEFI S, et al. Symmetric deformable image registration via opti- mization of information theoretic measures [J]. Image and Vision Computing, 2010, 28(6) .. 965 - 975. 被引量:1
  • 2LIU J G, YAN H. Phase correlation pixel-to-pixel im- age co-registration based on optical flow and median shift propagation [J]. International Journal of Remote Sensing, 2008, 29(20) : 5943 - 5956. 被引量:1
  • 3REUTER M. Hierarchical shape segmentation and reg- istration via topological features of laplace-beltrami ei- genfunctions[J]. International Journal of Computer Vi- sion, 2010, 89(2/3).. 287 - 308. 被引量:1
  • 4熊静旖 罗予频 唐光荣.一种应用于图像配准中大尺度位移估计的改进光流法.自动化学报,2008,. 被引量:1
  • 5RADGUI A, DEMONCEAUX C, RZIZA M, et al. An adapted Lucas-Kanade's method for optical flow estima- tion in catadioptrie images [C]// Proceedings of the 8th Workshop on Omnidirectional Vision and Camera Net- works. Marseiile: IEEE, 2008:287-299. 被引量:1
  • 6JODOIN P M, MIGNOTTE M.Optical-flow based on an edge-avoidance procedure [J]. Computer Vision and Image Understanding, 2009, 113 (4) : 511 - 531. 被引量:1
  • 7NAGAI Y, OHTAKE Y, SUZUKI H. Smoothing of partition of unity implicit surfaces for noise robust surface reconstruction [C]// Proceedings of the Symlmsium of the Geometry Processing Berlin: ACM, 2009: 1339- 1348. 被引量:1
  • 8HAE S O, WOO J J, TAK H W. The generalized prod- uct partition of unity for the meshless methods [ J]. Journal of Computational Physics, 2010, 229 ( 5 ) .. 1600 - 1620. 被引量:1
  • 9ALEXANDER D I, ALEXANDER J Z. Variational principles and well-posedness in optimization and calcu- lus of variations [J]. SIAM Journal on Control and Op- timization, 2000, 38(2) : 566 - 581. 被引量:1
  • 10INGYU L, RAGHAVAN P, ESMOND N G. Effec- tive preconditioning through ordering interleaved with incomplete factorization [J]. SIAM Journal on Matrix Analysis and Applications, 2006, 27(4): 1069- 1088. 被引量:1

同被引文献14

  • 1MAHADEVAN V, VASCONCELOS N. Spatiotemporal saliency in dynamic scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171-177. 被引量:1
  • 2ZHANG B C, GAO Y S, ZHAO S Q, et al. Kernel similarity modeling of texture pattern flow for motion detection in complex background [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(1): 29-38. 被引量:1
  • 3OLIVIER B, DROOGENBROECK V. ViBe: a universal background subtraction algorithm for video sequences [J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. 被引量:1
  • 4BOUWMANS T. Traditional and recent approaches in background modeling for foreground detection: an overview [J]. Computer Science Review, 2014, 11/12: 31-66. 被引量:1
  • 5LEE D. Effective gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5): 827-832. 被引量:1
  • 6HATI K K, SA P K, MAJHI B. Intensity range based background subtraction for effective object detection [J]. IEEE Signal Processing Letters, 2013, 20(8): 759-762. 被引量:1
  • 7KIM E Y, PARK S H. Automatic video segmentation using genetic algorithms [J]. Pattern Recognition Letters, 2006, 27(11): 1252-1265. 被引量:1
  • 8HUANG S S, FU L. Region level motion based background modeling and subtraction using MRFs [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1446-1456. 被引量:1
  • 9SHEN J, YANG W, LU Z, et al. Information integration for accurate foreground segmentation in complex scenes [J]. IET Image Processing, 2012, 6(5), 596-605. 被引量:1
  • 10BOUTHEMY P. 2D motion description and contextual motion analysis: issues and new models [C] ∥ Proceedings of the Workshop on Spatial Coherence for Visual Motion Analysis. Prague: Springer, 2006: 1-15. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部