期刊文献+

喷墨印花运动纹理的混态MRF检测算法

Mixed-state MRF detection algorithm for ink-jet printing motion texture
下载PDF
导出
摘要 针对喷墨印花织物在噪声环境下缺陷检测精度低的问题,提出一种基于混态马尔可夫随机场(MRF)模型的喷墨印花运动纹理检测算法.该算法利用运动纹理的时-空域特征表示,引入运动纹理的混态MRF模型,构建同时包含运动状态和背景状态的运动纹理特征图.为了有效提高模型对复杂纹理背景的表征能力,建立基于混态MRF模型的运动纹理检测模型,并将运动纹理检测过程转化为特征能量最小化问题.采用改进ICM优化求解算法,实现运动纹理检测和动态背景重构,有效提高运动纹理检测精度.实验结果表明:该算法能够有效检测出喷墨印花织物缺陷纹理,并且具有较强的抗噪声干扰能力. A novel motion texture detection algorithm based on the mixed-state Markov random field(MRF)model was proposed to deal with the problem of low accuracy in defect detection of ink-jet printing fabric under noisy environment.The representation of spatio-temporal features was applied for motion texture.Meanwhile,a mixed-state MRF model was introduced to constructing a feature map of motion texture,where motion and background states could be jointly modeled.Furthermore,a mixed-state MRF detection model for motion texture was presented to enhance the capability representation of dynamic background texture changes.The process of motion texture detection was formulated into the feature energy minimization problem.A novel ICM optimization algorithm was employed to deal with the problem of simultaneous motion texture detection and dynamic background reconstruction to improve the detection accuracy of motion texture.The experimental results show that the proposed algorithm can effectively detect defect texture from ink-jet printing fabric and has strong anti-jamming ability against noise.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第9期1642-1650,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(11426202) 浙江省自然科学基金资助项目(LY13F020027 LQ13F030010) 浙江省科技厅公益技术研究资助项目(2015C31088)
关键词 喷墨印花 混态 马尔可夫随机场(MRF) 运动纹理检测 ink-jet printing mixed-state Markov random field(MRF) motion texture detection
  • 相关文献

参考文献15

  • 1张春明,房宽峻,贡利华,赵珍玉,吴菡.数字喷墨印花对服装图案设计的革新[J].纺织学报,2008,29(5):75-79. 被引量:10
  • 2冯志林,尹建伟.喷墨印花纹理图像的单元分解光流场配准算法[J].浙江大学学报(工学版),2011,45(10):1720-1725. 被引量:1
  • 3MAHADEVAN V, VASCONCELOS N. Spatiotemporal saliency in dynamic scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171-177. 被引量:1
  • 4ZHANG B C, GAO Y S, ZHAO S Q, et al. Kernel similarity modeling of texture pattern flow for motion detection in complex background [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(1): 29-38. 被引量:1
  • 5OLIVIER B, DROOGENBROECK V. ViBe: a universal background subtraction algorithm for video sequences [J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. 被引量:1
  • 6BOUWMANS T. Traditional and recent approaches in background modeling for foreground detection: an overview [J]. Computer Science Review, 2014, 11/12: 31-66. 被引量:1
  • 7LEE D. Effective gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5): 827-832. 被引量:1
  • 8朱碧婷,郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法[J].中国图象图形学报,2008,13(10):1906-1909. 被引量:21
  • 9HATI K K, SA P K, MAJHI B. Intensity range based background subtraction for effective object detection [J]. IEEE Signal Processing Letters, 2013, 20(8): 759-762. 被引量:1
  • 10KIM E Y, PARK S H. Automatic video segmentation using genetic algorithms [J]. Pattern Recognition Letters, 2006, 27(11): 1252-1265. 被引量:1

二级参考文献26

  • 1徐谷仓.我国数码喷墨印花技术的发展[J].纺织导报,2005(2):22-22. 被引量:30
  • 2孔凡栋,张欣,吴宇.数码印花技术在服装衣片印花中的应用[J].针织工业,2005(8):38-40. 被引量:6
  • 3房宽峻.数字喷墨印花技术(六)[J].印染,2006,32(23):36-39. 被引量:3
  • 4GHOLIPOUR A, KEHTARNAVAZ N, YOUSEFI S, et al. Symmetric deformable image registration via opti- mization of information theoretic measures [J]. Image and Vision Computing, 2010, 28(6) .. 965 - 975. 被引量:1
  • 5LIU J G, YAN H. Phase correlation pixel-to-pixel im- age co-registration based on optical flow and median shift propagation [J]. International Journal of Remote Sensing, 2008, 29(20) : 5943 - 5956. 被引量:1
  • 6REUTER M. Hierarchical shape segmentation and reg- istration via topological features of laplace-beltrami ei- genfunctions[J]. International Journal of Computer Vi- sion, 2010, 89(2/3).. 287 - 308. 被引量:1
  • 7熊静旖 罗予频 唐光荣.一种应用于图像配准中大尺度位移估计的改进光流法.自动化学报,2008,. 被引量:1
  • 8RADGUI A, DEMONCEAUX C, RZIZA M, et al. An adapted Lucas-Kanade's method for optical flow estima- tion in catadioptrie images [C]// Proceedings of the 8th Workshop on Omnidirectional Vision and Camera Net- works. Marseiile: IEEE, 2008:287-299. 被引量:1
  • 9JODOIN P M, MIGNOTTE M.Optical-flow based on an edge-avoidance procedure [J]. Computer Vision and Image Understanding, 2009, 113 (4) : 511 - 531. 被引量:1
  • 10NAGAI Y, OHTAKE Y, SUZUKI H. Smoothing of partition of unity implicit surfaces for noise robust surface reconstruction [C]// Proceedings of the Symlmsium of the Geometry Processing Berlin: ACM, 2009: 1339- 1348. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部