摘要
研究了一类带有交叉扩散项的稀疏效应下捕食-食饵模型在齐次Neumann边界条件下的非常数正解的存在性.首先利用最大值原理和Harnack不等式给出了此模型的正解的先验估计;其次利用积分性质讨论了非常数正解的不存在性;最后利用度理论证明了非常数正解的存在性.
A predator-prey model with sparse effect and cross-diffusion under homogeneous Neumann boundary condition are discussed.Firstly,by means of maximum principle and Harnack inequality,the prior estimate to the positive solutions of the model is given.Secondly,by using the integral property,the non-existence of the non-constant positive solutions is considered.Finally,the Leray-Schauder degree theory is utilized for discussing the existence of the non-constant positive solutions.
出处
《纺织高校基础科学学报》
CAS
2011年第3期353-357,367,共6页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10971124)
教育部高等学校博士点专项资助项目(200807180004)