摘要
研究一类带有交叉扩散项的B-D捕食-食饵模型在齐次Dirichlet边界条件下正解的存在性.利用极大值原理得到正解的先验估计;通过分析相关特征值问题,得到两条无界的中性曲线;并借助Crandall-Rabinowitz分歧理论,得出局部分歧正解的存在性,从而将局部分歧延拓为全局分歧.
This paper concerns the existence of positive solutions for a predator-prey model with cross-diffusion and B-D functional response under homogeneous Dirichlet boundary conditions.By the maximum principle,apriori estimate of positive solutions are obtained.By considering the related eigenvalue problems,two unbounded neutral curves are given.Then by CrandallRabinowitz bifurcation theory,the existence of positive solutions to a local bifurcation is proved.Finally,the local bifurcation is developed to the global one.
出处
《纺织高校基础科学学报》
CAS
2016年第3期319-326,共8页
Basic Sciences Journal of Textile Universities
基金
陕西省自然科学基础研究计划项目(2015JM1034)
关键词
交叉扩散
捕食-食饵模型
先验估计
全局分歧
cross-diffusion
predator-prey model
apriori estimate
global bifurcation