摘要
讨论了一类带有Crowley-Martin反应项的非均匀Chemostat模型正解的存在性和稳定性。运用不动点指数理论得到了正解存在的充分条件;利用线性算子的扰动理论和分歧解的稳定性理论讨论了局部正解的稳定性。结果表明在一定条件下,两物种能共存,而且共存解稳定。
The existence and stability of the positive solutions for an unstirred Chemostat model with Crowley-Martin functional response are considered. Firstly, by means of the fixed point index theory, the sufficient conditions for the exis-tence of the positive solutions are determined. Moreover, the stability of the local positive solutions is investigated by using the perturbation theorem for linear operators and the stability theorem for bifurcation solutions. The results indicate that the two species will coexist under certain conditions, furthermore the coexistence solutions are stable.
出处
《计算机工程与应用》
CSCD
2014年第7期30-34,共5页
Computer Engineering and Applications
基金
陕西省科技新星专项项目(No.2011kjxx12)
陕西省自然科学基础研究计划资助项目(No.2011JQ1015)
中央高校基本科研业务费专项资金资助(No.GK201302025)
宝鸡文理学院重点项目(No.ZK12091)