期刊文献+

带C-M反应项的非均匀恒化器模型的共存态

Coexistence states of unstirred Chemostat model with C-M functional response
下载PDF
导出
摘要 讨论了一类带有Crowley-Martin反应项的非均匀Chemostat模型正解的存在性和稳定性。运用不动点指数理论得到了正解存在的充分条件;利用线性算子的扰动理论和分歧解的稳定性理论讨论了局部正解的稳定性。结果表明在一定条件下,两物种能共存,而且共存解稳定。 The existence and stability of the positive solutions for an unstirred Chemostat model with Crowley-Martin functional response are considered. Firstly, by means of the fixed point index theory, the sufficient conditions for the exis-tence of the positive solutions are determined. Moreover, the stability of the local positive solutions is investigated by using the perturbation theorem for linear operators and the stability theorem for bifurcation solutions. The results indicate that the two species will coexist under certain conditions, furthermore the coexistence solutions are stable.
出处 《计算机工程与应用》 CSCD 2014年第7期30-34,共5页 Computer Engineering and Applications
基金 陕西省科技新星专项项目(No.2011kjxx12) 陕西省自然科学基础研究计划资助项目(No.2011JQ1015) 中央高校基本科研业务费专项资金资助(No.GK201302025) 宝鸡文理学院重点项目(No.ZK12091)
关键词 CHEMOSTAT模型 Crowley-Martin反应函数 不动点指数 稳定性 Chemostat model Crowley-Martin functional response fixed point index stability
  • 相关文献

参考文献17

  • 1So W H, Waltman P.A nonlinear boundary value problem arising from competition in the chemostat[J].Applied Math- ematics and Computation, 1989,32(2) : 169-183. 被引量:1
  • 2Wu Jianhua.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis, 2000,39(7) :817-835. 被引量:1
  • 3Wu Jianhua, Nie Hua, Wolkowicz G.A mathematical model of competition for two essential resources in the unstirred chemostat[J].SIAM Journal Applied Mathematics, 2004, 65( 1 ) :209-229. 被引量:1
  • 4Qui Zhipeng, Yu Jun, Zou Yun.The asymptotic behavior of a chemostat model with the Beddington-DeAngelis func- tional response[J].Mathematical Biosciences, 2004, 187 ( 2 ) : 175-187. 被引量:1
  • 5聂华,吴建华.一类无搅拌的双营养竞争模型的数值模拟[J].工程数学学报,2005,22(3):420-426. 被引量:4
  • 6Nie Hua, Wu Jianhua.A system of reaction-diffusion equa- tions in the unstirred chemostat with an inhibitor[J].Interna- tional Journal of Bifurcation and Chaos, 2006, 16(4): 989-1009. 被引量:1
  • 7Zheng Sining, Guo Haijie, Liu Jing.A food chain model for two resours in unstirred chemostat[J].Appl Math Comput, 2008,206( 1 ) : 389-402. 被引量:1
  • 8Nie Hua, Wu Jianhua.Positive solutions of a competition model for two resources in the unstirred chemostat[J]. Journal of Mathematical Analysis and Applications, 2009, 355( 1 ) :231-242. 被引量:1
  • 9李艳玲,李海侠,吴建华.一类非均匀Chemostat模型的共存态[J].数学学报(中文版),2009,52(1):141-152. 被引量:10
  • 10Nie Hua, Wu Jianhua.Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor[J].Nonlinear Analysis : Real World Applica- tions,2010, 11:3639-3652. 被引量:1

二级参考文献20

  • 1聂华,吴建华.一类无搅拌的双营养竞争模型的数值模拟[J].工程数学学报,2005,22(3):420-426. 被引量:4
  • 2陈文源.非线性泛函分析[M].兰州:甘肃人民出版社,1982. 被引量:2
  • 3Hansen S R, Hubbell S P. Single nutrient microbial competition: agreement between experimental and theoretical forecast outcomes[J]. Science, 1980;207:1491-1493 被引量:1
  • 4Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[J]. SIAM J Appl Math, 1993;53(4):1026-1044 被引量:1
  • 5Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Anal, 2000;39:817-835 被引量:1
  • 6Ballyk M, Dung L, Jones D A, Smith H L. Effects of random motility on microial growth and competition in a flow reactor[J]. SIAM J Appl Math, 1998;59(2):573-596 被引量:1
  • 7Leon J A, Tumpson D B. Competition between two species for two complementary or two substitutable resources[J]. J Theor Biol, 1975;50:185-201 被引量:1
  • 8Cheng K S, Hsu S B, Hubbell S P. Exploitative competition of micro organisms for two complementary nuturients in continuous cultures[J]. SIAM J Appl Math, 1981;41(3):422-443 被引量:1
  • 9Li B, Wolkowicz G, Kuang Y. Global asymptotic behavior of a chemostat with two perfectly complementary resources and distributed delay[J]. SIAM J Appl Math, 2000;60:2058-2086 被引量:1
  • 10Hsu S B, Tzeng Y H. Plasmid-bearing, plasmid-free organisms competiting for two complementary nutrients in a chemostat[J]. Mathematical Biosciences, 2002;179:183-206 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部