期刊文献+

基于自适应网格划分的数据流聚类算法 被引量:2

A Data Stream Clustering Algorithm Based on Adapative Grid Partitioning
下载PDF
导出
摘要 本文提出了一种基于自适应网格划分的数据流聚类算法。通过采用网格的自适应划分,对传统的基于密度网格的数据流聚类算法,以均衡划分网格的方法进行改进,使网格的划分更加合理,减少硬性划分对结果可能造成的影响,提高了硬性划分边界的精度。同时采用剪枝方法,减少了算法的执行时间。最后,通过实验验证了该算法的有效性。 This paper proposes a data stream clustering algorithm based on adaptive grid partitioning. By using adaptive grid partitioning to improve the traditional methed of dividing grids in a balanced method, we make the grid division more reasonable and reduce the impact on the result, which improves the precision of grid partitioning. Using a pruning method to ruduce the algorithm's execution time is effective. Finally, the experimental results verify the effectiveness of the proposed algorithm.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第10期149-153,共5页 Computer Engineering & Science
关键词 数据流 聚类 滑动窗口 网格 data stream clustering sliding window grid
  • 相关文献

参考文献13

  • 1Aggarwal C C, Han J, Wang J, et al. A Framework for Clustering Evolving Data Streams [C] //Proc of the 29th VLDB Conference, 2003: 81-92. 被引量:1
  • 2Aggarwal C C, Han J, Wang J, et al. A Framework for Pro- jected Clustering of High Dimensional Data Streams[C]// Proc of the 30th VLDB Conference, 2004:852-863. 被引量:1
  • 3胡彧,闫巧梅.滑动窗口模型下的优化数据流聚类算法[J].计算机应用,2008,28(6):1414-1416. 被引量:6
  • 4常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 5单世民..基于网格和密度的数据流聚类方法研究[D].大连理工大学,2006:
  • 6杨宁,唐常杰,王悦,陈瑜,郑皎凌.一种基于时态密度的倾斜分布数据流聚类算法[J].软件学报,2010,21(5):1031-1041. 被引量:17
  • 7于翔..基于网格的数据流聚类方法研究[D].哈尔滨工程大学,2010:
  • 8Cao F, Ester M, Qian W, et aI. Density-Based Clustering o ver an Evolving Data Stream with Noise[C]//Proc of the SI AM Conference on Data Ming, 2006:326-337. 被引量:1
  • 9Chen Y, Tu I.. Density-Based Clustering for Real-Time Stream Data[C]//Proe of KDD'07, 2007:133-142. 被引量:1
  • 10Beringer J, Hullermeier E. Online Clustering of Parallel Da- ta Streams[J]. Data& Knowledge Engineering, 2005,58 ( 2 ) : 180-204. 被引量:1

二级参考文献24

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2孙玉芬,卢炎生.流数据挖掘综述[J].计算机科学,2007,34(1):1-5. 被引量:36
  • 3常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 4Aggarwal CC,Han J,Wang J,Yu PS.A framework for clustering evolving data streams.In:Freytag JC,Lockemann PC,Abiteboul S,Carey MJ,Selinger PG,Heuer A,eds.Proc.of the Int'l Conf.on Very Large Data Bases.Berlin:Morgan Kaufmann Publishers,2003.81-92 被引量:1
  • 5Chalaghan LO,Mishra N,Meyerson A,Guha S.Streaming data algorithms for high-quality clustering.In:Proc.of the 18th Int'l Conf.on Data Engineering.San Jose,2002.685-694.http://doi.ieeecomputersociety.org/10.1109/ICDE.2002.994785 被引量:1
  • 6Domingos P,Hulten C.Mining high-speed data streams.In:Proc.of the KDD.2000.http://citeseer.ist.psu.edu/domingos00mining.html 被引量:1
  • 7Guha S,Meyerson A,Mishra N,Motwani R,Callaghan LO.Clustering data streams:Theory and practice.IEEE Trans.on Knowledge and Data Engineering,2003,3(15):515-528. 被引量:1
  • 8Guha S,Mishra N,Motwani R,Callaghan LO.Clustering data stream.In:Proc.of the 41st Annual Symp.on Foundations of Computer Science.Redondo Beach:IEEE Computer Society,2000.359-366. 被引量:1
  • 9Nam H,Won S.Statistical grid-based clustering over data streams.SIGMOD Record,2004,33(1):32-37. 被引量:1
  • 10Ordonez C.Clustering binary data streams with k-means.In:Zaki MJ,Aggarwal CC,eds.Proc.of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD).San Diego,2003.12-19. 被引量:1

共引文献77

同被引文献15

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部