期刊文献+

滑动窗口内基于密度网格的数据流聚类算法 被引量:5

Density grid-based data stream clustering algorithm over sliding window
下载PDF
导出
摘要 提出了一种基于密度网格的数据流聚类算法。通过引入"隶度",对传统的基于网格密度的数据流聚类算法,以网格内数据点的个数作为网格密度的思想加以改进,解决了一个网格内属于两个类的数据点以及边界点的处理问题。从而既利用了基于网格算法的高效率,还较大程度地提高了聚类精度。 This paper introduced a density grid-based data stream clustering algorithm.Through the introduction of the "subject degree",the traditional density grid-based clustering algorithm for data stream was improved by taking the data points within the grid as the grid density,thereby resolving the problem of data points belonging to two classes in one grid as well as the treatment of boundary points.Therefore,not only the high efficiency of the grid-based algorithm was utilized,but also the clustering accuracy was raised significantly.
出处 《计算机应用》 CSCD 北大核心 2010年第4期1093-1095,共3页 journal of Computer Applications
关键词 聚类 数据流 网格 滑动窗口 隶度 clustering data stream grid sliding window subject degree
  • 相关文献

参考文献5

  • 1李敏..基于网格和密度的数据流聚类算法研究[D].武汉理工大学,2009:
  • 2O' CALLAGHAN L,MISHRA N,MEYERSON A,et al.Streaming-data algorithms for high quality clustering[C]// Proceedings of IEEE International Conference on Data Engineering.Washington,DC:IEEE Computer Society,2002:685. 被引量:1
  • 3AGARWAL C,HAN J,WANG J,et al.A framework for clustering evolving data streams[C].VLDB 2003:Proceedings of the 29th International Conference on Very Large Data Bases.Berlin:VLDB Endowment,2003,29:81-92. 被引量:1
  • 4CHEN Y,TU L.Density-based clustering for real-time stream data[C]//KDD' 07:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2007:133-142. 被引量:1
  • 5单世民..基于网格和密度的数据流聚类方法研究[D].大连理工大学,2006:

同被引文献33

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部