期刊文献+

基于聚度的PSO参数分析 被引量:2

Analysis about Parameters Selection of PSO Based on Cluster-degree
下载PDF
导出
摘要 对PSO方法中粒子运行规律给出较为完整的分析,考察随机性对粒子运动过程的影响,提出聚度的概念,并通过粒子的聚度考察粒子在实际运行条件下的分布情况,给出更加具体的参数设置区间,提出一种粒子在运动过程中的速度补偿策略,对于一些参数设置可以通过该策略提高搜索性能,该策略对实际应用中选择和调整PSO算法参数有较强的指导意义。 The particle's trajectory of PSO was fully analyzed in this paper,the influence of random parameters on particle's trajectory was discussed,the concept of cluster-degree was put forward and distribute status of particle with different cluster-degree was studied.The reasonable parameters setting range based on cluster-degree was proposed,at the same time,reinforce strategy of particle's velocity was proposed in order to improve performance of PSO under some condition.So this paper is helpful for the choosing and adjustment of PSO parameters in practical application.
出处 《计算机科学》 CSCD 北大核心 2011年第10期181-183,共3页 Computer Science
基金 国家自然科学基金(61035003 60933004 60970088 61072085 60903141) 国家973项目(2007CB311004) 山东省中青年科学家奖励基金(2009BSB01383)资助
关键词 粒子群优化 聚度 速度补偿策略 Particle swarm optimization Cluster-degree Velocity reinforce strategy
  • 相关文献

参考文献11

  • 1Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C] // Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya,Japan, 1995:39-43. 被引量:1
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization. IEEE International Conference on Neural Networks[C]// IEEE Service Center. Piscataway, NJ, 1995 : 1942-1948. 被引量:1
  • 3Clerc M. TRIBES-Aparameter Free Particle Swarm Optimizer [EB/OL]. http://clerc, maurice, free. fr/PSO, 2002-08-10/ 2003-10-08. 被引量:1
  • 4Salman A. Discrete Particle Swarm Optimization for Heterogeneous Task Assignment Problem [C]//Proceedings of World Multiconference on Systemics, Cybernetics and Informaties (SCI 2001). Orlando,Florida(USA) ,July 2001:335-341. 被引量:1
  • 5Clerc M. Discrete Particle Swarm Optimization: A Fuzzy CombinatorialBlackBox[EB/OL], http..//clerc, maurice, free. fr/PSO/ Fuzzy Discrete_PSO/Fuzzy_DPSO. htm, 2000-04-01/2003-10- 08. 被引量:1
  • 6Hirotaka, Yoshida, Kenichi. A particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Stability[C]// IEEE International Conference on Intelligent System Applications to Power Systems. Rio de Janeiro, 1999. 被引量:1
  • 7Voss M S, Feng X. Arrna model selection using particle swarm optimization and AIC criterion[C]//Proceedings of the 15th IFAC Triennial World Congress on Automation Control. Barcelona, Spain, 2002 : 255-261. 被引量:1
  • 8Clerc M. Some math about particle swarm optimization [EB / OL]. http..//clerc, maurice. free. fr/pso,2002-08-10/2003-10-08. 被引量:1
  • 9Van den Bergh F. An analysis of Particle Swarm Optimizers [D]. Pretoria: University of Pretoria, 2001. 被引量:1
  • 10李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48

二级参考文献9

  • 1Kennedy J.,Eberhart R.C..Particle swarm optimization.In:Proceedings of the IEEE International Conference on Neural Networks,Perth Australia,1995,1942~1948 被引量:1
  • 2Eberhart R.C.,Shi Y..Particle swarm optimization:developments,applications and resources.In:Proceedings of the Congress on Evolutionary Computation 2001,Seoul Korea,2001,81~86 被引量:1
  • 3Ender O.,Mohan C.K..Particle swarm optimization:surfing the waves.In:Proceedings of the 1999 Congress of Evolutionary Computation,Washington DC USA,1999,1939~1944 被引量:1
  • 4Clerc M.,Kennedy J..The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Transactions on Evolutionary Computation,2002,6(1):58~73 被引量:1
  • 5Shi Y.,Eberhart R.C..A modified particle swarm optimizer.In:Proceedings of the Congress on Evolutionary Computation 1998,Anchorage AK,USA,1998,69~73 被引量:1
  • 6Wolpert D.H.,Macready W.G..No free lunch theorems for optimization.IEEE Transactions on Evolutionary Computation,1997,1(1):67~82 被引量:1
  • 7Holland J..Adaption in Natural and Artificial System.Ann Arbor:University of Michigan Press,1975 被引量:1
  • 8van den Bergh F..An analysis of particle swarm optimizers[Ph.D.dissertation].Department of Computer Science,University of Pretoria,South Africa,2002 被引量:1
  • 9Shi Y.,Eberhart R.C..Fuzzy adaptive particle swarm Optimization.In:Proceedings of the Congress on Evolutionary Computation 2001,Seoul,Korea,2001,101~106 被引量:1

共引文献47

同被引文献31

  • 1周文.粒子群优化算法及其参数设置的研究[J].湖北职业技术学院学报,2006,9(4):93-96. 被引量:5
  • 2高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 3FAHIM A.M,SALEM A.M,TORKEY F.A,RAMADAN M.A.An efficient enhanced k-means clustering algorithm[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1626-1633. 被引量:30
  • 4刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49
  • 5汪定伟,王俊伟,汪洪峰,张瑞友,郭哲.智能优化算法[M].北京:高等教育出版社,2007:26-40. 被引量:42
  • 6BethartR,KennedyJ. A new optimizer using particle swarm theory [ C ]//In: Proceeding of the 6th International Symposium on Micro Machine and Human Science, N J: IEEECS, 1995:39-43. 被引量:1
  • 7Trelea I.The particle swarm optimization algorithm : convergence analysis and parameter selection [ J ] Information Processing Letters,2003, 85 (6) : 317- 325. 被引量:1
  • 8Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C] // IEEE Congress on Evolutionary Computation. Piscataway:: IEEE Service Center, 2000: 84- 88. 被引量:1
  • 9Shi Y,Eberhart R. Empirical study of particle swarm optimization [C] // Proceedings of the 1999 Congress on Evolutionary Computation, 1999: 1945- 1950. 被引量:1
  • 10Zheng Yong- ling, Ma Long- hua,, Zhang Li- yan, et al. On the convergence analysis and parameter selection in particle swarm optimization [C] // Proceedings of the Second International Conference on Machine Learning and Cybemetics,,Xi'an, 2003: 1802- 1807. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部