期刊文献+

一种融合K-means算法和人工鱼群算法的聚类方法 被引量:10

A NEW CLUSTERING METHOD COMBINING K-MEANS AND ARTIFICIAL FISH SWARM
下载PDF
导出
摘要 针对K-means易收敛于局部最优以及对初始值敏感和人工鱼群算法收敛速度快,对初始值不敏感及自组织行为的问题,提出一种K-means和人工鱼群算法融合的聚类方法。该算法先将标准人工鱼群算法用自适应策略加以改进,即在人工鱼群算法早期迭代中使用固定视野,随着迭代次数的增加,采用自适应减少的视野值。在此基础上将K-means算法融入到改进的人工鱼群算法中人工鱼中,随机产生的部分人工鱼在每次完成人工鱼群算法的迭代后,进行一次K-means算法的迭代。实验结果证明融合后的新算法明显地优于粒子群优化(PSO)、K-means及改进的人工鱼群算法(IAFSA),它将有效地被应用于数据聚类中。 Aiming at the problems of K-means clustering being subject to local optimum and sensitive to initial value, and the problems of artificial fish swarm algorithm having high convergence rate, being insensitive to initial values and self-organising behaviour, we propose a clustering method which combines K-means and artificial fish swarm algorithm. The algorithm first slightly improves the standard artificial fish swarm algorithm with self-adaptive strategy:i, e. in early iteration of artificial fish swarm algorithm it uses the fixed visual perspective, with the increase of iteration times, is adopts the self-adaptive decreasing visual perspective value. Based on this, it integrates K-means algorithm to artificial fishes of the improved artificial fish swarm algorithm, part of the artificial fishes randomly generated will go through the iteration of K-means once after finishing each iteration in artificial fish algorithm. Experimental results prove that the new algorithm is obviously superior to the particle swarm optimisation, K-means and the improved AFSA, and ig will be effectively applied in data clustering.
出处 《计算机应用与软件》 CSCD 2015年第9期240-243,279,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61170120) 江苏省自然科学基金项目(BK2011147)
关键词 K—means人工鱼群算法 自组织行为 自适应策略 粒子群优化 K-means Artificial fish swarm algorithm (AFSA) Self-organising behaviour Self-adaptive strategy Particle swarm optimisation
  • 相关文献

参考文献14

  • 1Datta Souptik, Giannella Chris, Kargupta Hillol, et al. Approximate Dis- tributed K-Means Clustering over a Peer-to-Peer Network [ J ]. IEEE Transactions on Knowledge and Data Engineering,2009,21 (10) :1372 -1388. 被引量:1
  • 2Ajit K Sahoo, Ming J Zuo, MK Tiwari, et al. A data clustering algorithm for stratified data partitioning in artificial neural network [ J ]. Expert Systems with Application ,2012,39( 8 ) :7004-7014. 被引量:1
  • 3Gong M, Liang Y, Shi J, et al. Fuzzy C-Means Clustering With Local In- formation and Kernel Metric for Image Segmentation [ J ]. IEEE Trans- actions on ImageProcessing,2013,22(2) :573 -58d. 被引量:1
  • 4章成志.基于机器学习的文本聚类描述算法研究[J].情报学报,2009,28(2):225-232. 被引量:1
  • 5Zhang L J, Cheng S, Chang C K, et al. A Pattern-Recognition-Based Al- gorithm and Case Study for Clustering and Selecting Business Services [ J ]. IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans,2012,42 ( 1 ) : 102 - 114. 被引量:1
  • 6Ali Peiravi, Habib Rajabi Mashhadi, SHamed Javadi, et al. An optimal energy:efficient clustering method in wireless sensor networks using multi-objective genetic algorithm [ J ]. International journal of communi- cation systems, 2013,26( 1 ) :114 - 126. 被引量:1
  • 7李晓磊..一种新型的智能优化方法—人工鱼群算法[D].浙江大学,2003:
  • 8钟蔚,李天友.基于自适应人工鱼群算法的输电网网架规划[J].电气技术,2012,13(1):16-19. 被引量:2
  • 9FAHIM A.M,SALEM A.M,TORKEY F.A,RAMADAN M.A.An efficient enhanced k-means clustering algorithm[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1626-1633. 被引量:30
  • 10邓辉,王勇,陈士亮.AFSA与改进FSOA相结合的优化方法[J].计算机工程与应用,2011,47(31):57-62. 被引量:4

二级参考文献70

  • 1金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:90
  • 2李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 3刘可真,陈勇,束洪春.基于改进遗传算法的输电网优化规划[J].昆明理工大学学报(理工版),2007,32(1):31-35. 被引量:10
  • 4范玉军,王冬冬,孙明明.改进的人工鱼群算法[J].重庆师范大学学报(自然科学版),2007,24(3):23-26. 被引量:43
  • 5Glenisson P,Gl??nzel W,Janssens F,et al.Combining Full Text and Bibliometric Information in Mapping Scientific Disciplines[J].Information Processing & Management,2005,41(6):1548-1572. 被引量:1
  • 6Lai K K,Wu S J.Using the Patent Co-citation Approach to Establish a New Patent Classification System[J].Information Processing & Management,2005,41(2):313-330. 被引量:1
  • 7Tseng Y H,Lin C J,Chen H H,Lin et al.Toward Generic Title Generation for Clustered Documents[C].Proceedings of the 3rd Asia Information Retrieval Symposium,Singapore,2006:145-157. 被引量:1
  • 8Cutting D R,Karger D R,Pedersen J O,et al.Scatter/Gather:A Cluster-based Approach to Browsing Large Document Collections[C].Proceedings of the 15th International ACM SIGIR Conference on Research and Development in Information Retrieval,Copenhagen,Denmark,1992:318-329. 被引量:1
  • 9Cutting D R,Karger D R,Pedersen J O.Constant Interaction-time Scatter/Gather Browsing of Large Document Collections[C].Proceedings of the 16th International ACM SIGIR Conference on Research and Development in Information Retrieval,Pittsburgh,PN,USA,1993:126-135. 被引量:1
  • 10Muller A,Dorre J,Gerstl P,et al.The TaxGen Framework:Automating the Generation of a Taxonomy for a Large Document Collection[C].Proceedings of the 32nd Hawaii International Conference on System Sciences,Maui,HI,USA,1999:2034-2042. 被引量:1

共引文献48

同被引文献102

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部