期刊文献+

一种基于图的特征选择方法 被引量:2

New filter method for feature selection based on graph
下载PDF
导出
摘要 在很多的机器学习和数据挖掘任务中,特征子集选择是重要的数据预处理步骤之一。提出一种基于图方法的无监督式特征选择方法(GBFS),构造一个以样本数据为顶点,数据间相似性作为边的图,再根据各特征的得分优先选择那些具有局部信息保持和全局区分能力的特征。实验结果表明,基于该方法选择的特征子集,在大多数情况下都能取得较好的分类效果。 In many machine learning and data mining tasks,feature subset selection is an important step in data preprocessing.This paper presents a Graph Based Feature Selection(GBFS) algorithm,which is based on the graph,and prefers the features with local information preserving and global discriminative power.The experimental results validate its effectiveness in feature subset selection.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第26期186-188,共3页 Computer Engineering and Applications
基金 广东省科技计划项目(No.2007B030100001)
关键词 特征选择 基于图的方法 局部和全局信息 feature selection graph based local and global information
  • 相关文献

参考文献11

  • 1何志文,李夕海,刘代志,张斌.基于相关性分析的特征选择方法研究[J].核电子学与探测技术,2005,25(6):729-732. 被引量:11
  • 2Dy J G,Brodley C E.Feature selection for unsupervised learning[J]. Journal of Machine Learning Research,2004,5:845-889. 被引量:1
  • 3Kohavi R, John G H.Wrappers for feature subset selection[J]. Artificial Intelligence, 1997(1/2) : 273-324. 被引量:1
  • 4Guyou I,Elisseeff A.A introduction to variable and feature selection[J].Journal of Machine Learning Research, 2003,3 : 1153-1182. 被引量:1
  • 5BShop C M.Neural networks for pattern recognition[M].Oxford London:Oxford University Press, 1995. 被引量:1
  • 6He X, Cai D,Niyogi RLaplacian score for feature selection[C]// Proceedings of Advances in Neural Information Processing System.Cambridge, MA: MIT Press, 2005. 被引量:1
  • 7韦佳,彭宏.基于局部与全局保持的半监督维数约减方法[J].软件学报,2008,19(11):2833-2842. 被引量:25
  • 8Andrew N, Michael Y, Jordan I, et al.On spectral clustering: analysis and an algorithm[C]//Proceedings of Advances in Neural Information Processing Systems.Carribridge, MA: MIT Press, 2001: 849-856. 被引量:1
  • 9Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6): 1373-1396. 被引量:1
  • 10Chung F R K.Spectral graph theory[M]//Regional Conference Series in Mathematies.[S.l.]: American Mathematical Society, 1997. 被引量:1

二级参考文献31

  • 1Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York: John Wiley & Sons, 2001. 被引量:1
  • 2Turk MA, Pentland AP. Face recognition using eigenfaces. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 1991. 586-591. 被引量:1
  • 3Martinez AM, Kak AC. PCA Versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(2):228-233. 被引量:1
  • 4Zhu XJ. Semi-Supervised learning literature survey. Technical Report, 1530, Department of Computer Sciences, University of Wisconsin at Madison, 2006. http://www.cs.wisc.edu/-jerryzhu/pub/ssl_survey.pdf 被引量:1
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 1103-1110. 被引量:1
  • 6Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior' knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002. 307-314. 被引量:1
  • 7Shental N, Hertz T, Weinshall D, Pavel M. Adjustment learning and relevant component analysis. In: Shental N, Hertz T, Weinshall D, Pavel M, eds. Proc. of the 7th European Conf. on Computer Vision. London: Springer-Verlag, 2002. 776-792. 被引量:1
  • 8Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning Research, 2005,6(6):937-965. 被引量:1
  • 9Xing EP, Ng AY, Jordan MI, Russell S. Distance metric learning, with application to clustering with Side-information. In: Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing Systems 15. Cambridge: MIT Press, 2003. 505-512. 被引量:1
  • 10Tang W, Zhong S. Pairwise constraints-guided dimensionality reduction. In: Proc. of the 2006 SlAM Int'l Conf. on Data Mining Workshop on Feature Selection for Data Mining. 2006. 59-66. 被引量:1

共引文献34

同被引文献41

  • 1杨耀武,张平.中国经济高质量发展的逻辑、测度与治理[J].经济研究,2021,56(1):26-42. 被引量:330
  • 2张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 3Boutcmedjet S, Bouguila N, Ziou D. A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Cluste- ring. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (8) : 1429-1443. 被引量:1
  • 4Boutsidis C, Mahoney M W, Drineas P. Unsupervised Feature Selection for Principal Components Analysis // Proe of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2008:61-69. 被引量:1
  • 5Cai D, He X F, Han J W. Sparse Projections over Graph//Proe of the 2lst AAAI Conference on Artifieial Inte|Iigence. Chicago, USA, 2008:610-615. 被引量:1
  • 6Xu Z L, King I, Lyu M R T, et al. Discriminative Semi-Supervised Feature Selection via Manifold Regularization. IEEE Trans on Neu- ral Networks, 2010, 21 (7) : 1033-1047. 被引量:1
  • 7He X F, Cai D, Niyogi P.' Laplacian Score for Feature Selection// Proc o: the Advances in Neural lnfonnat:,n Process:,r,g Systems lg. Vancouver, Canada, 2005:507-514. 被引量:1
  • 8Cai D, Zhang C Y, He X F. Unsupervised Feature Selection for Multi-cluster Data// Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washing- ton, USA, 2010:333-342. 被引量:1
  • 9Li Z C, Yang Y, Liu J, et al. Unsupervised Feature Selection Using Nonnegative Spectral Analysis // Proc of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012 : 1026-1032. 被引量:1
  • 10Zhu X F, Huang Z, Yang Y, et al. Self-Taught Dimensionality Reduction on the High-Dimensional Small-Sized Data. Pattern Recognition, 2013, 46(1 ): 215-229. 被引量:1

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部