期刊文献+

基于中心距离比值准则的无监督特征选择算法 被引量:1

Unsupervised feature selection algorithm based on center distance ratio principle
下载PDF
导出
摘要 特征选择是模式识别中的一个重要组成部分。针对未知类标号的样本集,提出基于中心距离比值准则的无监督特征选择算法。该算法利用爬山法确定聚类数目范围和估计初始聚类中心,再通过K-均值聚类算法确定特征子集的最佳分类数,然后用中心距离比值准则来评价特征子集的分类性能,并通过特征间的相关性分析,从中选择出分类效果好,相关程度低的特征组成特征子集。 Feature selection is an important component of pattern recognition.For unknown class label samples set,an unsupervised feature selection algorithm based on center distance ratio principle is proposed.The algorithm uses the mountain method to get the range of clustering number and estimate original clustering centers,then K-means clustering algorithm is adopted to confirm the optimal classification number of feature subset,and then center distance ratio principle is used to measure the classification performance of feature subset,moreover the feature correlation is analyzed,so the features with good class effect and low correlation are selected.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第4期162-164,共3页 Computer Engineering and Applications
关键词 特征选择 中心距离比值 相关性 聚类 无监督 feature selection center distance ratio correlation clustering unsupervised
  • 相关文献

参考文献7

二级参考文献24

  • 1Sergios Theodoridis Konstantinos Koutroumbas.Pattern Recognition(Second Edition)[M].北京:机械工业出版社,2003.163-205. 被引量:1
  • 2Nojun Kwak,et al. Input Feature Selection for Classification Problems[ J ]. IEEE Transaction on Neural Network ,2002,13 : 143-157. 被引量:1
  • 3Ming Dong,Ravi Kothari. Feature Subset Selection Using a New Definition of Classifiability [ J ]. Pattern Recognition Letters ,2003,24 :1215-1225. 被引量:1
  • 4M Dash. Feature Selection via Set Cover [ C ]. Newport Beach:Proceedings of the 1997 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'97), 1997. 165-171. 被引量:1
  • 5M Morita, R Sabourin,et al. Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition[ C ]. Edinburgh, Scotland:International Conference on Document Analysis and Recognition ( ICDAR'03 ) ,2003. 666-671. 被引量:1
  • 6Jayanta Basak, Rajat K De, Sankar K Pal. Unsupervised Feature Selection Using a Neuro-fuzzy Approach [ J ]. Pattern Recognition Letters,1998,19( 11 ) :997-1006. 被引量:1
  • 7M Dash, H Liu ,J Yao. Dimensionality Reduction of Unsupervised Data[ C]. Newport Beach:Proc. 9th IEEE Int'l Conf Tools with Artifical Intelligence, 1997. 532- 539. 被引量:1
  • 8Nicolas V, L M, J-G Postaire. Unsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation[ C ]. Vancouver,Canada: IEEE International Conference on Image Processing (ICIP'2000) ,2000. 800-803. 被引量:1
  • 9Kira k,L A Rendell. A Practical Approach to Feature Selection[ C ].The 9th International Conference on Machine Learning, Morgan Kaufmann, 1992. 249-256. 被引量:1
  • 10Elashoff J D,et al. On the Choice of Variables in Classification Problems with Dichotomous Variables [ C ]. Biometrika, 1967. 668- 770. 被引量:1

共引文献173

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部