期刊文献+

人体动作识别中基于HTM架构的时空特征提取方法 被引量:2

Spatial-temporal feature extraction method based on HTM structure for human action recognition
下载PDF
导出
摘要 针对人体动作识别中时空特征提取问题,提出一种基于层次时间记忆(HTM)架构的深度学习模型,用来提取图像帧的时空特征。将图像帧构建成树型节点层次结构,在每一层中,通过欧氏距离分组来提取图像样本的空间特征,利用时间邻接矩阵提取样本的时间特征,利用置信传播方法将各层局部特征组进行汇总归类,得到整体特征组,作为该图像帧的时空特征。此外,在节点操作中引入张量代数,从而避免出现高维特征,将特征送入支持向量机(SVM)分类器进行识别分类。在MSR Gesture 3D和KTH动作数据库上的实验结果表明,提出的方法能够有效提取出高分类性能的时空特征,分类准确率高于其他几种较新的方法。 For the issue that the spatial-temporal feature extraction for human motion recognition,this paper proposed a depth learning model based on the hierarchical time memory( HTM) architecture to extract the spatial-temporal features of the image frame. Firstly,it constructed the image frame as the tree hierarchy structure. Then,it used for clustering based on Euclidean distance to extract the spatial features of sample image,and used for time adjacency matrix to extract the temporal features. At the same time,it adopted belief propagation method to gather the local feature group,so as to obtain the overall feature as the spatial-temporal feature of the image frame. In addition,it integrated the tensor algebra into the node operation to avoid the occurrence of high dimensional features. Finally,it inputted the feature into the support vector machine( SVM) classifier for recognition and classification. The experimental results on MSR Gesture 3 D and KTH action database show that proposed method can effectively extract the spatial-temporal feature with high classification performance,and it has higher classification accuracy rate than several other advanced methods.
作者 王向前 孙挺
出处 《计算机应用研究》 CSCD 北大核心 2017年第12期3899-3903,共5页 Application Research of Computers
基金 河南省科技厅科技发展计划软科学资助项目(132400410927) 河南省科技厅科技发展计划科技攻关项目(122400450356)
关键词 人体动作识别 时空特征提取 层次时间记忆 支持向量机 human action recognition spatial-temporal feature extraction hierarchical temporal memory support vector machine
  • 相关文献

参考文献9

二级参考文献148

  • 1张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 2Daigo Muramatsu,Mitsuru Kondo,Masahiro Sasaki.A markov chain montecarlo algorithm for bayesian dynamic signature verification. IEEE Transactions on Information Forensics and Secur-ity . 2006 被引量:1
  • 3Lin Hai,Li Haizhou.Chinese signature verification with mo-ment Invariants. Systems,Man,and Cybernetics IEEEInternational Conference on 1996 . 1996 被引量:1
  • 4Dileep G,Hawkins J.Towards a mathematical theory of cor-tical micro-circuits. Plos Computational Biology . 2009 被引量:1
  • 5Bobier B,Wirth M.Content-based image retrieval using hi-erarchical temporalm emory. Proceeding of the 16thACM international conferenceon on Multimedia . 2008 被引量:1
  • 6Hawkins J,George D.Hierarchical temporal memory. http://www.numenta.com/htm-overview/education/Numenta_HTM_Learning_Algos.pdf . 2007 被引量:1
  • 7Numenta.Advanced NuPIC programming. ht-tp://www.numenta.com . 2008 被引量:1
  • 8George,D.How the brain might work: a hierarchical and temporal model for learning and recognition. . 2008 被引量:1
  • 9Plamondon R,Lorette G.Automatic signature verification and writer identification-the state of the art. Pattern Recognition . 1989 被引量:1
  • 10Leclerc F,Plamondon R.Automatic signature verification: the state of the art 1989-1993. International Journal of Pattern Recognition and Artificial Intelligence . 1994 被引量:1

共引文献294

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部