期刊文献+

混菌发酵中不同分子量代谢产物对非酿酒酵母胞内蛋白及酒体有机酸的影响 被引量:6

Metabolites with different molecular weight influencing on intracellular protein of non-Saccharomyces Cerevisiae and wine organic acid
原文传递
导出
摘要 本研究采用透析袋发酵法研究了酿酒酵母产生的不同分子量代谢产物对非酿酒酵母胞内蛋白和酒体有机酸的影响。当截留分子量为3.5 kD和10.0 kD时非酿酒酵母的存活时间分别延长至18 d和22 d,表明通过改变菌种之间物质的交换可以调节非酿酒酵母的存活时间。蛋白质解析发现共有65个蛋白质斑点表达出现差异,占蛋白质总数的13%,经质谱鉴定表明与这些蛋白同类固醇、赖氨酸、有机酸和ATP的生物合成有关。与截留分子量为10 kD的透析袋发酵相比,在截留分子量为3.5 kD的混菌发酵中,酒石酸含量升高5.1%、醋酸含量下降44.3%,说明通过限定菌体间代谢产物的沟通可以调整酒的滴定酸度和挥发酸度。 In this study,the effect of extracellular metabolites produced by Saccharomyces cerevisiae on intracellular protein expression of Non-Saccharomyces cerevisiae and on the quality of wine was investigated by dialysis tube fermentation method.By using dialysis tubes with molecular weight cut-off value of 10.0 kD and 3.5 kD respectively in the mixed fermentation,the survival time of non-S.cerevisiae was extended to 18 days and 22 days correspondingly.Consequently the survival time of non-S.cerevisiae can be changed by limiting the exchange of metabolites between strains.65 proteins,namely 13% of the total protein,were found differently expressed,with mass spectrometry results indicating their close relation to the biosynthesis of steroids,lysine,organic acids and ATP.Compared with 10.0 kD dialysis tube fermentation,in 3.5 kD dialysis tube,the concentration of tartaric acid increased by 5.1% while acetic acid decreased by 44.3%,which indicates that by allowing communication of metabolism between cells with limited molecular weight,we can adjust the yield of wine's titratable acidity and volatile acidity.
出处 《微生物学通报》 CAS CSCD 北大核心 2011年第9期1443-1448,共6页 Microbiology China
关键词 双向电泳 透析袋发酵 挥发酸度 混菌发酵 Two-dimensional electrophoresis Dialysis tube fermentation Volatile acidity Mixed fermentation
  • 相关文献

参考文献14

  • 1Ciani M, Picciotti G. The growth kinetics and fermenta- tion behaviour of some non-Saccharomyces yeasts associ- ated with wine-making[J]. Biothechnology Letters, 1995, 17(11): 1247-1250. 被引量:1
  • 2Viegas CA, Rosa MF, Sa-Correia 1, et al. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation[J]. Appl Environ Microbiol, 1989, 55(1): 21-28. 被引量:1
  • 3Edwards CG, Beelman RB, Bartley CE, et al. Production of decanoic acid and other volatile compounds and the growth of yeast and malolactic bacteria during vinification[J]. Am J Enol Vitie, 1990, 41(1): 48-56. 被引量:1
  • 4Bisson LF. Stuck and sluggish fermentations[J]. Am J Enol Viticult, 1999, 50(1): 107-119. 被引量:1
  • 5Fleet GH. Yeast interactions and wine flavour[J],Int J Food Microbiol, 2003, 86(1/2): 11-22. 被引量:1
  • 6Woods DR, Bevan EA. Studies on the nature of the killer factor produced by Saccharomyces cerevisiae[J]. J Gen Microbiol, 1968, 51(1): 115-126. 被引量:1
  • 7Schmitt M J, Breinig F. The viral killer system in yeast:from molecular biology to application[J]. FEMS Micro- biol Rev, 2002, 26(3): 257-276. 被引量:1
  • 8Albergaria H, Francisco D, Gori K, et al. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains[J]. Appl Microbiol Biotechnol, 2010, 86(3): 965-972. 被引量:1
  • 9Nissen P, Arnebrog N. Characterization of early deaths of non-saccharomyces yeasts in mixed cultures with Sac- charomyces cerevisiae[J]. Arch Microbiol, 2003, 180(4): 257-263. 被引量:1
  • 10Cheraiti N, Guezenec S, Salmon JM. Redox Interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in Mixed Culture under Enological Conditions[J]. Applied and Environmental Microbiology, 2005, 71(1): 255-260. 被引量:1

二级参考文献20

  • 1余俊红,樊伟,史媛英,郝俊光.啤酒中蛋白酶A的研究进展[J].酿酒,2005,32(5):53-57. 被引量:4
  • 2O'Farrell PH. High-resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975, 250(10): 4007-4021. 被引量:1
  • 3Kolse J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals[J]. Humangenetik, 1975, 26(3): 231-243. 被引量:1
  • 4Bruckmann A, Hensbergen PJ, Balog CIA, et al. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells[J]. Journal of Proteomics, 2009, 71(6): 662-669. 被引量:1
  • 5Cheng JS, Zhou X, Ding MZ, et al. Proteomic insights into adaptive responses of Saccharomyces eerevisiae to the repeated vacuum fermentation[J]. Appl Microbiol Biotechnol, 2009, 83(5): 909-923. 被引量:1
  • 6Rogowska-Wizesinska A, Larsen PM, Blomberg A, et al. Comparison of the proteomes of three yeast wild types strains: CEN. PK2, FY1679 and W303[J]. Comparative and Functional Genomics, 2001, 2(4): 207-225. 被引量:1
  • 7Salusjarvi L, Poutanen M, Pitkanen JP, et al. Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae[J]. Yeast, 2003, 20(4): 295-314. 被引量:1
  • 8Hu Y, Wang G, Chen GYJ, et al. Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis[J]. Electrophoresis, 2003, 24(9): 1458-1470. 被引量:1
  • 9Chen YP, Kirk N, Piper PW. Effects of medium composition on MFα1 promoter-directed secretion of a small protease inhibitor in Saccharomyces Cerevisiae batch fermentation[J]. Biotechnoloy Letters, 1993, 15(3): 223-228. 被引量:1
  • 10Harder A, Wildgruber R, Nawrocki A, et al. Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis[J]. Electrophoresis, 1999, 20(4/5): 826-829. 被引量:1

共引文献14

同被引文献81

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部