摘要
通过分析变胞机构的拓扑构态变换过程,提出一种能描述杆件减少过程中任意杆件合并的矩阵表达新方法,此方法不需要进行行列变换就可得到简洁的终态矩阵,且不影响原机构杆件的编号。以此方法为基础,阐述杆件数增加或不变的变胞机构拓扑构态变换的数学描述和实现方法。根据变胞机构构态变化规律和平面机构构型综合的拓扑相关性,提出基于变胞机构拓扑构态变换的数学描述进行平面闭链机构构型综合的新方法,给出单自由度闭链构型综合的实现方法和步骤,并以8杆机构构型综合为例进行应用说明。
A new matrix expression is put forward through analyzing metamorphic processes.It can describe arbitrary link that is attached to another in the process of link-decreasing,compact-final matrix can be achieved without row-column transformation and initial configuration link numbers are not changed.Based on this method,new matrix description about link-increasing or link unchanging in configuration changing is purposed.In view of planar single degree of freedom and closed chain structure synthesis,with new matrix expression and description and graph theory,a new method is obtained based on the metamorphic principle of metamorphic mechanism,and detail structure synthesizing steps are given.As an example,the synthesis method is demonstrated with the aid of planar closed kinematic chains with eight links and single degree of freedom.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2011年第15期1-8,共8页
Journal of Mechanical Engineering
基金
国家高技术研究发展计划(863计划
2008AA04Z202)
国家自然科学基金(51075079)资助项目
关键词
变胞机构
构态变换
图论
邻接矩阵
构型综合
Metamorphic mechanism Configuration change Graph theory Adjacent matrix Structure synthesis