摘要
Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide.The structure was characterized by using SEM,TEM,and FT-IR,and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry(CV),and charge-discharge tests,respectively.A maximum specific capacitance of 533 F/g could be achieved in 1mol/L aqueous H_2SO_4 with the potential range of -0.2 to 0.8 V(vs.the saturated calomel electrode) in a half-cell setup configuration for PANI electrode,suggesting its potential application in the electrode material for electrochemical capacitors.
Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide.The structure was characterized by using SEM,TEM,and FT-IR,and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry(CV),and charge-discharge tests,respectively.A maximum specific capacitance of 533 F/g could be achieved in 1mol/L aqueous H_2SO_4 with the potential range of -0.2 to 0.8 V(vs.the saturated calomel electrode) in a half-cell setup configuration for PANI electrode,suggesting its potential application in the electrode material for electrochemical capacitors.
基金
the financial support from the National Natural Science Foundation of China (No.50602020)
the National Basic Research Program of China(No.2007CB216408)